

Prince Sultan University

Department of Mathematical Sciences

MATH 223 – First Examination 1 April 2007

Dr. Aiman Mukheimer

Time allowed: 90 minutes

Maximum points: 100 points

1. (6 points) Reduse
$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & -2 & -29 \\ 3 & 4 & 5 \end{bmatrix}$$
 to reduced row-echelon form without introducing any fractions

2. (8 points) For which value(s) of λ does the system of equations

$$(\lambda - 3)x + y = 0$$

 $x + (\lambda - 3)y = 0$ have nontrivial solutions?

3. (6 points) Using the given information $(I + 2A)^{-1} = \begin{bmatrix} -1 & 2 \\ 4 & 5 \end{bmatrix}$, find the matrix A

4. (6 points) Find a diagonal matrix
$$A$$
 that satisfies $A^{-2} = \begin{bmatrix} 25 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 9 \end{bmatrix}$

5. (8 points) Solve for
$$x$$
 . $\begin{vmatrix} x & -1 \\ 3 & 1-x \end{vmatrix} = \begin{vmatrix} 1 & 0 & -3 \\ 2 & x & -6 \\ 1 & 3 & x-5 \end{vmatrix}$

6. (8 points) Evaluate the determinant of the matrix $\begin{vmatrix} 1 & -2 & 3 & 1 \\ 5 & -9 & 6 & 3 \\ -1 & 2 & -6 & -2 \\ 2 & 8 & 6 & 1 \end{vmatrix}$ by reducing

the matrix to row-echelon form.

7. (6 points) Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$. Assuming that det(A) = -6, find

- i) det(3A)
- $\det(5A^{-1})$ ii)
- $\det((2A)^{-1})$

8. (6 points) Prove the identity without evaluating the determinants.

$$\begin{vmatrix} a_1 + b_1 & a_1 - b_1 & c_1 \\ a_2 + b_2 & a_2 - b_2 & c_2 \\ a_3 + b_3 & a_3 - b_3 & c_3 \end{vmatrix} = -2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

9. (6 points) Find the distance between the point (1,8) and the line 3x + y = 5.

10. (6 points) Let $\mathbf{p} = (2, k)$ and $\mathbf{q} = (3, 5)$. Find k such that \mathbf{p} and \mathbf{q} are parallel.

11. (8 points) let
$$A = \begin{bmatrix} 2 & 5 & 5 \\ -1 & -1 & 0 \\ 2 & 4 & 3 \end{bmatrix}$$
 find $adj(A)$ then use it to find A^{-1} .

12. (12 points) Solve by Cramer's rule, where it applies.
$$4x + 5y = 2$$
$$11x + y + 2z = 3$$
$$x + 5y + 2z = 1$$

- 13. (6 points) Let u = (3,1,-7) and a = (1,0,5)
 - i) Find the vector component of u along a.

ii) Find the vector component of u orthogonal to a.

- iii) Find $\|proj_a u\|$
- 14. (8 points) Show that there do not exist scalars c_1 , c_2 , and c_3 such that: $c_1(-2,9,6)+c_2(-3,2,1)+c_3(1,7,5)=(0,5,4)$