a) Find the volume of the solid that is bounded by the elliptic paraboloid 2x² + y² + z = 9 and the planes x = 1 and y = 1 and the three coordinates planes.
b) Evaluate the integral ∬_D xsiny dA, where is the region bounded by the curves y = 0, y = x², and x = 2.

2) Evaluate the iterated integrals:

a)
$$\int_0^1 \int_{3y}^3 e^{x^2} dx dy$$
 b) $\int_{-5}^5 \int_0^{\sqrt{25-x^2}} \cos(x^2 + y^2) dy dx$.

3)a) Find the area of the part of the hyperbolic paraboloid $z = y^2 - x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. b) Evaluate the triple integral $\int_0^2 \int_y^1 \int_0^{xy} 2x dz dx dy$.

- 4) a) Evaluate the triple integral by changing to cylindrical coordinates:
- $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{1} xz dz dy dx.$
- b) Change the point $(3, \frac{\pi}{2}, \frac{3\pi}{4})$ from spherical coordinates to rectangular coordinates.

5)a) Write the equation $x^2 + y^2 - 2y + z^2 = 0$ in spherical coordinates and sketch .

b) Find the volume of the part of the ball $\rho \le 2$ that lies between the cones $\phi = \frac{\pi}{6}$ and $\phi = \frac{\pi}{3}$.