<u>Part 1.</u>

*Please c*ircle the correct answer, to the nearest number for the quantitative questions. *Each Question worth's 1 point*.

- 1. Two uncharged conducting spheres, **A** and **B**, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held *near*, *but not touching* sphere **A**, someone moves ball B away from A. How will the spheres be charged, *if at all*?

2. One mole of a substance contains 6.02×10^{23} protons and an equal number of electrons. If the protons could somehow be separated from the electrons and placed in very small, individual containers separated by 1.00×10^3 m, what would be the magnitude of the electrostatic force exerted by one box on the other?

(A) deficiency, 6×10^{13}	(B) excess, 2×10^{13}	(C) deficiency, 1×10^{12}
(D) excess, 3×10^{13}	(E) deficiency, 3×10^{12}	

3. At which point (or points) is the electric field (N/C) zero for the two point charges shown on the *x* axis?

- (A) The electric field is never zero in the vicinity of these charges.
- (B) The electric field is zero somewhere on the x axis to the left of the +4q charge.
- (C) The electric field is zero somewhere on the x axis to the right of the -2q charge.
- (D) The electric field is zero somewhere on the x axis between the two charges, but this point is nearer to the -2q charge.
- (E) The electric field is zero at two points along the x axis; one such point is to the right of the -2q charge and the other is to the left of the +4q charge.
- 4. Four point charges are placed at the corners of a square as shown in the figure. Each side of the square has length **2.0 m**. Determine the magnitude of the electric field at the point **P**, the center of the square. $+4 \mu C = +1 \mu C$

5. What is the electric flux passing through a Gaussian surface that surrounds a +0.075 C point charge?

(A) $8.5 \times 10^9 \mathrm{N \cdot m^2/C}$	(B) $1.3 \times 10^7 \mathrm{N \cdot m^2/C}$	(C) $7.2 \times 10^5 \mathrm{N \cdot m^2/C}$
(D) $6.8 \times 10^8 \mathrm{N \cdot m^2/C}$	(E) $4.9 \times 10^6 \mathrm{N \cdot m^2/C}$	

+4 uC

6 .	Which one of the following statements best explains why it is possible to define an <i>electrostatic potential</i> in a region of space that contains an <i>electrostatic field</i> ?					
	 (a) Work must be done to bring two positive charges closer together. (b) Like charges repel one another and unlike charges attract one another. (c) A positive charge will gain kinetic energy as it approaches a negative charge. (d) The work required to bring two charges together is independent of the path taken. (e) A negative charge will gain kinetic energy as it moves away from another negative charge. 					
7.	Two positive point charges are separated by a distance R . If the distance between the charges is reduced to $R/2$, what happens to the total electric potential energy of the system?					
	(A) It is doubled(C) It remains th(E) It increases b	e same. by a factor of 4.	(B) It is reduced(D) It is reduced	to one-half of its to one-fourth of it	original value. ts original value.	
8.	A charge $q = -4.0 \ \mu$ C is moved 0.25 m horizontally to point P in a region where an electric field is 150 V/m and directed vertically as shown. What is the change in the electric potential energy of the charge?					
	(A) -2.4×10^{-3} (D) $+2.4 \times 10^{-3}$	I I	(B) $+1.5 \times 10^{-4}$ (E) zero joules	J	(C) $-1.5 \times 10^{-4} \text{ J}$	
9.	Which one of the following changes will necessarily increase the capacitance of a capacitor?					
	 (A) decreasing the charge on the plates (B) increasing the charge on the plates (C) placing a dielectric between the plates (D) increasing the potential difference between the plates (E) decreasing the potential difference between the plates 					
10.	A 10-A current What net charg	-A current is maintained in a simple circuit with a total resistance of 200 Ω . t net charge passes through any point in the circuit during a 1-minute interval?				
	(A) 200 C	(B) 500 C	(C) 1200 C	(D) 400 C	(E) 600 C	
11.	Determine the l area of 1×10^{-4}	Determine the length of a copper wire that has a resistance of 0.172Ω and cross-sectional area of $1 \times 10^{-4} \text{ m}^2$. The resistivity of copper is $1.72 \times 10^{-8} \Omega \cdot \text{m}$.				
	(A) 0.1 m	(B) 100 m	(C) 10 000 m	(D) 10 m	(E) 1000 m.	
F 1	- C					

Second Semester 2010 First Exam

PHY 205

14/4/2010

H.S.

Part 2. Please show your work in the space provided.

1. Three charges are located along the x axis as shown in the drawing. The mass of the $-1.2 \,\mu\text{C}$ is $4.0 \times 10^{-9} \,\text{kg}$. Determine the magnitude and direction of the acceleration of the $-1.2 \,\mu\text{C}$ charge when it is allowed to move if the other two charges remain fixed. (2 points)

(b) $1 \times 10^5 \text{ m/s}^2$, to the left

Answer (with units):_____

2. How much energy is stored in the combination of capacitors shown? (2 points)

(c) 0.03 J

Answer (with units):_____

PHY 205	Second Semester 2010	14/4/2010
	First Exam	H.S.

3. Three resistors and two 10.0-V batteries are arranged as shown in the circuit diagram. What is the power delivered to the 12 Ω resistor?

(2 points)

Answer (with units):_____

End of part 2.

<u>Some useful constants:</u> $e^{-} = 1.60 \ge 10^{-19} C$., $\varepsilon_0 = 8.85 \ge 10^{-12} C^2 / (N.m^2)$, $k = (1/4\pi\varepsilon_0) = 8.99 \ge 10^9 N.m^2/C^2$, $m_e = 9.11 \ge 10^{-31} kg$, $m_p = 1.67 \ge 10^{-27} kg$.