

Department of Mathematics and General Sciences

Physics 1 (PHY105) First Major Exam

First Semester, Term 141 Date: Sunday 26/10/2013

Name:	
ID number:	
Section number (or time):	
Instructor's name:	

Important instructions:

- 1. Examination time: 60 minutes.
- 2. Write your name before starting with the questions.
- 3. Switch off your mobile phone and put any books and notes away.
- 4. You should have 5 pages in total
- 5. You may *not* borrow a calculator.
- 6. Use $g = 9.8 \text{ m/s}^2$.

Good Luck!

	Mark
Part 1	
Part 2	
Total	

Part 1 (10 points):

Indicate the answer choice that best completes the statement or answers the question.

1. Which one of the choices below represents the preferred adding the following: $12.3 + 12 + 88.16 + 2.218$	erred practice regarding significa	ant figures when
a) 114.7 b) 115 c) 114.678 d) 114.6780	I	
2. The slope of the tangent line to the the velocity vs. t	ime curve at a given time repres	ents:
acceleration at that time. velocity at tha	t time velocity.	acceleration.
 3. Omar throws a rock down with speed 13 m/s from What is the height of the tower? (air resistance is nega) 23 m b) 83 m c) 37 m d) 46 m 	the top of a tower. The rock his gligible)	ts the ground after 2 s.
 4. A ball is thrown. At what point is the magnitude of negligible) 	the acceleration at a minimum? ((air resistance is
a) acceleration is constant during entire path b) just before hitti the ground	ng c) just after leaving the thrower's hand	d) at the top of the path
5. Which of the following is not a vector quantity?a) acceleration b) velocity c) displacement	d) speed	
 6. A jogger runs halfway around a circular path with a displacement? a) 104 b) 52 m c) 163 m d) 0 m 	radius of 52 m. What is the mag	gnitude of his
7. If <i>a</i> is acceleration, <i>v</i> is velocity, <i>x</i> is position, and <i>t</i> correct? a) $t = x/v$ b) $t^2 = 2x/a$ c) $a = v^2/x$ d) $v = v^2/x$	is time, then which equation is n a/t	not dimensionally
 8. A railroad train travels forward along a straight traction the next 1000 m (in the same direction). What is its a) 77.0 m/s b) 72.5 m/s c) 72.0 m/s d) 75.10 m/s 	k at 90 m/s for 1000 m and the overall average velocity? 5 m/s	n travels at 60 m/s for
 9. An Ant travels 30 cm eastward, then 30 cm northw direction of displacement with respect to its original a) 50° North of East b) 45° North of West c 	vard, and finally 5 cm westward. position? (2) 40° North of West d) 130	What is the Ant's North of East
 10. A European sports car dealer claims that his produ of 100 km/hr in 6 s. What distance will the sports c a) 41.5 m b) 166 m c) 58.1 m d) 83 m 	ct will accelerate at a constant r ar travel during the 6 s accelerat	ate from rest to a speed tion period?

Part 2 (5 points):

Solve the following two problems in the provided space. Show your steps and include the appropriate units.

- Q1. (2 points) A car starting from rest accelerates at a constant rate of 2 m/s^2 for 100 meters. The driver then applies the brakes, causing the car to decelerate at a constant rate. The car stops completely 4 seconds after applying the brakes.
 - a) Calculate the velocity of the car just before the brakes were applied.
 - b) What is the total distance the car has traveled?

- Q2. (3 points) A ball is kicked from the ground at an angle of $\theta_0 = 45^\circ$ from the horizontal towards a wall located x = 20 m away, as shown in the figure. The ball hits the wall 2 seconds later. Calculate:
 - a) the initial speed of the ball v_0
 - b) the height at which the ball hits the wall h
 - c) the speed and direction of the ball just before hitting the wall

Scratch sheet. Keep attached