1)a) Evaluate the iterated integral: (i) $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \cos(x^2 + y^2) \, dy \, dx$. (ii) $\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{1}{x^3+1} \, dx \, dy$.

b) Find the area of the surface part of the sphere $x^2 + y^2 + z^2 = 1$ that lies inside within the cylinder $x^2 + y^2 = x$ and above the xy - plane. (sketch the cylinder).

2)a) Find a basis for the subspace $W = \{(x, y, z): 3x - 2y + 5z = 0\}$ of \mathbb{R}^3 .

b) Find the distance between the vectors u = (2,1,-1) and the vector $v = (2,1,1) \times (-1,2,4)$.

3)a) Determine whether the following set $S = \{p_1 = 1 - x + 2x^2, p_2 = 3 + x, p_3 = 5 - x + 4x^2, p_4 = -2 - 2x + 2x^2\}$ spans the vector space P_2 of all polynomials with degree less than or 2. What is the dimension of the vector subspace W = span(S)?

b) For which real values of μ do the following vectors form a linearly dependent set in R^3 ?

$$u_1 = \left(\mu, -\frac{1}{2}, -\frac{1}{2}\right), u_2 = \left(-\frac{1}{2}, \mu, -\frac{1}{2}\right), u_3 = \left(-\frac{1}{2}, -\frac{1}{2}, \mu\right)$$

4) a) Use the Garm-Schmidt process to transform the basis $S = \{v_1 = (1,1,1), v_2 = (-1,1,0), v_3 = (1,2,1)\}$ of the 3-space into an orthonormal basis T.

b) If w = (1,2,3) find the coordinate vector of w with respect to the basis S ((w)_S =?).

c) If w = (1,2,3) find the coordinate vector of w with respect to the orthonormal basis T ((w)_T =?).

5) Consider the matrix $A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$ with its characteristic polynomial $p(\mu) = -(\mu - 5)(\mu - 3)^2$.

a) For each eigenvalue μ of A, find the set of eigenvectors corresponding to μ .

b) If possible, find a basis for R^3 consisting of eigenvectors of A. Is A diagonalizable?

c) If successful in b), find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

d) Find the eigenvalues of A^2 and (A - 3I) and their corresponding eigenvectors.