1) Evaluate the iterated integral: $\int_{1}^{2} \int_{0}^{2z} \int_{0}^{lnx} x e^{-y} dy dx dz$

2) a) Write the equation $x^2 - x + y^2 + z^2 = 1$ in cylindrical coordinates.

b) Change the point $(\rho, \theta, \phi) = (3, \pi/2, 3\pi/4)$ given in spherical coordinates to rectangular coordinates.

3)a) Evaluate $\int \int \int_E \sqrt{x^2 + y^2} dV$, where (i) *E* is the region lies inside the cylinder $x^2 + y^2 = 16$ and between the planes z = -5 and z = 4.

(ii) E is the solid lies between the spheres $\rho = 2$ and $\rho = 3$.

b) Use spherical coordinates to find the volume of the solid that lies above the cone z = $\sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 2z$ (sketch the solid roughly)

- 4) Let $\mathbf{u} = (1, 2, 3)$ and $\mathbf{v} = (0, 1, 4)$.
- a) Find $\|\mathbf{u} 2\mathbf{v}\|$.
- b) Find $\cos\theta$, where θ is the angle between the vectors **u** and **v**.
- c) Find $\mathbf{v} \times (\mathbf{u} 2\mathbf{v})$

d) If the vectors **u**, **v** and the vector $\mathbf{w} = \mathbf{u} - 2\mathbf{v}$ have the same initial point, decide whether the vectors \mathbf{u} , \mathbf{v} and \mathbf{w} lie in the same plane or not.

- 5) Consider the planes 3x y + z 4 = 0 and x + 2z + 1 = 0.
- a) Determine whether the two planes are perpendicular or not.

b) Find the distance between the point (1,1,1) and the plane 3x - y + z - 4 = 0.

c) Find the equation of the plane passing through the point P(1,2,3) and which is parallel to plane x + 2z + 1 = 0.