- 1) Sketch the domain of $f(x, y) = log_3(9 x^2 y^2)$, then find $f_x(0,0)$ and $f_y(0,0)$.
- 2) Find the limit, if it exists, or show that the limit does not exist (prove your answer if exists):

a)
$$lim_{(x,y)\to(0,0)} \frac{x^2 + sin^2 y}{3x^2 + y^2}$$
 b) $lim_{(x,y)\to(0,0)} \frac{4xy}{\sqrt{x^2 + y^2}}$

- 3) Consider the function z = f(x, y) = xsin(x + y).
 - a) Find the differential dz.
 - b) Find the equation of the tangent plane at the point where $(x, y) = (\frac{\pi}{2}, 0)$.
 - c) Use the differential or the tangent plane to approximate $f(\frac{\pi}{2}$ +0.01, 0.01).
- 4) a) If w = xy + yz + zx and $x = r\cos\theta$, $y = r\sin\theta$, $z = r\theta$, find $\frac{\partial w}{\partial \theta}$ when $(r, \theta) = (2, \frac{\pi}{2})$.

b) If
$$yz + xlny = z^2$$
, find $\frac{\partial z}{\partial y}$.

5) Find the critical points for the function $f(x, y) = 9 - 2x + 4y - x^2 - 4y^2$ and then use the second derivative test to classify them.