

Prince Sultan University Orientation Mathematics Program MATH 001 Midterm Examination Semester II, Term 092 Saturday, April 10, 2010 Time Allowed: 120 minutes (2 hours)

| Student Name:     |              |
|-------------------|--------------|
| Student ID #: Key | Section #: _ |
| Teacher's Name:   |              |

## **Important Instructions:**

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 14 problems, some with several parts. Make sure your paper has all these problems.

| Problems | Max points | Student's Points |
|----------|------------|------------------|
| 1,2,3,4  | 14         |                  |
| 5,6,7,8  | 18         |                  |
| 9,10     | 18         |                  |
| 11       | 15         |                  |
| 12       | * 20       |                  |
| 13,14    | 15         |                  |
| Total    | 100        |                  |

## Show all your steps for each question

(i) 
$$(5+\sqrt[4]{81})^{-\frac{2}{3}} = (5+3)^{-\frac{2}{3}} = \frac{1}{8^{2}4^3} = \frac{1}{4}$$

(ii) 
$$\frac{|x-1|}{3} - \frac{xy}{1+y}$$
, for  $x = -2$  and  $y = 1$   
 $\frac{|-2-1|}{3} - \frac{(-2)(1)}{1+1} = \frac{|-3|}{3} - \frac{-2}{2}$   
 $= \frac{3}{3} + 1$   
 $= \frac{2}{3}$ 

Q.4 (6 points) Perform the indicated operations and write the result in the <u>standard form</u> of a complex number.

(i) 
$$\sqrt{-9(2-\sqrt{-4})} = 3i(2-2i)$$
  
 $= 6i - 6i^{2}$   
 $= 6i + 6 = -6i^{2}$   
 $= 6i + 6 = -6i^{2}$   
(ii)  $(2-3i)(1-i) + (3-i)(3+i) = (2 - 2i + 3i^{2}) + (9 - i^{2})$   
 $= (2 - 3i + 3i^{2}) + (9 - i^{2})$   
 $= (2 - 5i - 3) + (9 + 1)$   
 $= -1 - 5i + 1^{2} = -9 - 5i$   
(iii)  $\frac{3-2i}{2+i} = \frac{3-2i}{2+i} \cdot \frac{2-i}{2-i} = \frac{6 - 3i - 4i + 2i^{2}}{4 - i^{2}}$   
 $= \frac{6-7i - 2}{4 + 1} = 4 - 7i$   
 $= -\frac{4}{5} - \frac{7}{5}i$ 

Q.5 (2 points) Use equality of two complex numbers to find the real numbers x and y such that the equation is true.

$$x + \sqrt{-16} = 2 + yi$$
  
 $x = 2$   
 $y = 4$ 

Q.6 (3 points) Rationalize the denominator in 
$$\frac{4}{3\sqrt{2}-4}$$
  
 $\frac{4}{3\sqrt{2}-4} \cdot \frac{3\sqrt{2}+4}{3\sqrt{2}-4} = \frac{12\sqrt{2}+16}{9(2)-16} = \frac{12\sqrt{2}+16}{2} = \frac{6\sqrt{2}+8}{2}$ 

Q.7 (3 points) Find all numbers that must be excluded from the domain of the rational

Expression 
$$\frac{x-2}{x^2-2x-15} \longrightarrow (X-5)(X+3)$$
  
 $X \neq 5 \quad 2X \neq -3$   
The numbers that must be excluded from the domain are.  
 $E3$  and  $5$ 

Q.8 (10 points) Simplify each of the following expressions. Assume that all variables represent positive numbers.

(i) 
$$8-5[3x-4(2x-3)] = 8-5\left[3 \times -8 \times +12\right]$$
  
 $= 8-5\left[-5 \times +12\right]$   
 $= 8+25 \times -60 = -52 + 25 \times -60$   
(ii)  $(3x^2y^{-3})(-2x^3y)^2 = (3x^2y^{-3})(4x^6y^2)$   
 $= \frac{12 \times 8}{y}$   
(iii)  $\sqrt{2x^3} + 3x \sqrt{8x} = \sqrt{x^2/2x} + 3\lambda \sqrt{4/2x}$   
 $= \frac{72 \times \sqrt{2x}}{y}$   
(iv)  $\left(\frac{-35x^2y^4}{5x^6y^{-8}}\right)^3 = \left(\frac{-7y^{12}}{x^4}\right)^3 = \frac{-7^3y^{36}}{x^{12}} = -\frac{-343y^{36}}{x^{12}}$ 



| (1)                  | Oraphi | ms equanc  | m. Den |  |
|----------------------|--------|------------|--------|--|
| starting with -2 and |        |            |        |  |
| x                    | 3      | (X,Y)      | L      |  |
| -2                   | 0      | (-2,0)     |        |  |
| -1                   | 3      | (-1,3)     |        |  |
| 0                    | 4      | (0,4)      |        |  |
| 1                    | 3      | (1, 3)     |        |  |
| 2                    | 0      | (2,0)      |        |  |
| 1                    | Det    | to a dla a |        |  |



(i) 
$$5x^4 - 45x^2 = 5x^2(x^2 - 9)$$
  
=  $5x^2(x-3)(x+3)$ 

ending with 2.

(ii) 
$$6x^2 - 11x - 10 = (3x + 2)(2x - 5)$$

(iii) 
$$x^{3}-2x^{2}-9x+18 = (x^{3}-2x^{2}) - (9x-18)$$
  

$$= x^{2}(x-2) - 9(x-2)$$

$$= (x-2)(x^{2}-9)$$

$$= (x-2)(x-3)(x+3)$$
(iv)  $(1-x)^{\frac{1}{2}}-(1-x)^{-\frac{1}{2}} = (1-x)((x-3)(x+3))$ 

$$= (1-x)^{\frac{1}{2}}(-x) - 1 = (1-x)^{\frac{1}{2}}(-x)$$



Q.11 (15 points) Perform the indicated operations and *simplify* as much as possible.

(i) 
$$(2x-y)(x+5y)-3(x-y)^2 = (2x^2+10xy-5y^2) - 3(x^2-2xy+y^2)$$
  
 $= 2x^2+9xy-5y^2 - 3x^2+6xy-3y^2$   
 $= \sqrt{-x^2+15xy-8y^2}$   
(ii)  $(\frac{x+1}{2x+3} \div \frac{x^2-4x-5}{2x^2+x-3}) - \frac{2}{x-5} - (\frac{x+1}{2x+3} \cdot \frac{2x^2+x-3}{x^2-4x-5}) - \frac{2}{x-5}$   
 $= (\frac{x+1}{2x+3} \cdot \frac{(2x+3)(x-1)}{(x-5)(x+1)}) - \frac{2}{x-5}$   
 $= \frac{x-1}{x-5} - \frac{2}{x-5} = \frac{x-1-2}{x-5} = \frac{x-3}{x-5}$ 

(iii) 
$$\frac{5}{x^2 + x} - \frac{10}{x^2 - 1} = \frac{5}{x(x + 1)} - \frac{10}{(x - 1)(x + 1)}$$
  

$$= \frac{5(x - 1)}{x(x - 1)(x + 1)} - \frac{10 \cdot x}{x(x - 1)(x + 1)}$$

$$= \frac{5x - 5 - 10x}{x(x - 1)(x + 1)} = -\frac{5x - 5}{x(x - 1)(x + 1)} = -\frac{5(x + 1)}{x(x - 1)(x + 1)}$$
(iv)  $(13x^4 - 8x^3 + 2x^2) - (5x^4 - 3x^3 + 2x^2 - 6)$   

$$= \boxed{8x^4 - 5x^3 + 6}$$
(v)  $\frac{(2x - 7)^5}{(2x - 7)^3} = (2x - 7)^2 = \sqrt{4x^2 - 28x + 49}$ 

5

Q.12 (20 points) Solve each of the following equations. (*Without using a Calculator*) (Show your steps)

(i) 
$$2x-3(x-1)=5(3-x)+8$$
  
 $2 \times -3x+3 = 15 - 5 \times +8$  () he expanding ()  
 $-x + 3 = 23 - 5 \times$  () he multiply call side  
 $4x = \frac{20}{4}$  (55) is a one side/hum.  
 $\overline{X = 5}$  ()  $-5 \times +8$  () he supplify call side  
 $5 \times 10^{-10}$  k s on one side/hum.

(ii) 
$$5x^{2}-6x = 4x^{2}+6x-4$$
  
(iii)  $5x^{2}-6x = 4x^{2}+6x-4$   
(iii)  $5x^{2}-12x + 4 = 0$   
(iv)  $x^{2}-12x + 6^{2} = -4 + 6^{2}$   
(iv)  $x^{2}-12x + 6^{2} = -4 + 6^{2} = -4 + 6^{2}$   
(iv)  $x^{2}-12x + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4 + 6^{2} = -4$ 

(111) 
$$2(2x+8)^2 = 54$$
  
 $\sqrt{2x+8}^2 = \sqrt{27} + \sqrt{3} + \sqrt{2}$   
 $2x+8 = \pm 3\sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3}$   
 $\frac{2x}{2} = -8 \pm 3\sqrt{3} + \sqrt{3} + \sqrt{3}$ 

(iv) 
$$x^{4} - 2x^{2} + 1 = 0$$
  
(iv)  $x^{4} - 2x^{2} + 1 = 0$   
 $(x^{2} - 1) (x^{2} - 1) = 0$   
 $x^{2} - 1 = 0$   
 $(x^{2} - 1) (x + 1) = 0$   
 $(x - 1) (x + 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x + 1) = 0$   
 $(x^{2} - 1) (x + 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x + 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1) (x^{2} - 1) = 0$   
 $(x^{2} - 1) (x^{2} - 1$ 

(v) 
$$\sqrt{2x+19-8} = x^{2}$$
  
(k)  $\sqrt{2x+19}^{2} = (x+8)^{2}$   
(k) for words 8  $(\sqrt{2x+19})^{2} = (x+8)^{2}$   
(k) for sigs.  $2x+19 = x^{2}+16x+64$  (i) for expansion  $(5-5)^{2}$   
(k) for sigs.  $2x+19 = x^{2}+14x+450$  more employ  $h/R/5-5^{2}$   
 $0 = x^{2}+14x+450$  more employ  $h/R/5-5^{2}$   
 $0 = (x+9)(x+5)$   
 $(x=-9)$  (high  $p/x=-5$ )  
 $(x=-9)$  (high  $p/x=-5$ )  
 $\sqrt{9} - 8 = -51$   
(heck  $\sqrt{1}-8 = -9$  rejected (k) rejeter.

Q.13 (5 points) Solve the following absolute value equation..

for

Q.14 (10 points) Solve each of the following inequalities and *graph* the solution set on a number line. Express the solution set using *interval notation*.



-7 232-5 77

