

Prince Sultan University Department of Mathematical Sciences Major II Exam

Semester I, 2008 FALL (081)

:_____

:_____

MATH 101 – Finite Mathematics

Time Allowed: 120 minutesMaximum Points:100 points

Name of the student:_____

ID number

Section

Question	Maximum score	Your Score
Q.1	10	
Q.2	6	
Q.3	8	
Q.4	8	
Q.5	12	
Q.6	8	
Q.7	12	
Q.8	12	
Q.9	16	
Q.10	8	
Total	100	

<u>Q.1(10</u>	points) : Write <u><i>True</i></u> or <u><i>False</i></u> for each of the following statements.	
1)	An account that pays 8% interest compounded semiannually is better than an account that pays 8% compounded quarterly.	
2)	An investment of \$1,000 at 5% compounded annually for $1-year$ produces the same interest as an investment of \$1,000 at 5% simple interest for $1-year$.	
3)	If an investment pays interest at an annual rate of 5% per year, compounded twice a year, then the effective rate is larger than 5%	
4)	Shortening the period of a loan lowers the monthly payments.	
5)	Some LP problem have no solution.	
6)	The graphical method is practical for all LP problems.	
7)	If a linear programming problem has a solution, it is located at the center of the set of feasible points	
8)	In a linear programming problem, there may be more than one point that maximizes or minimizes the objective function.	
9)	The point (8,8) is in the solution set of the system of inequalities. 8x - 2y > 16 $2x - 9y \le -18$	
10)	The effective rate for an account that pays $6\%~$ interest compounded monthly is $~6.17\%~$	

Q.2(6 points): Determine without graphing which of the points $P_1(8,6)$, $P_2(2,-5)$, and $P_3(4,1)$ is(are) part of the graph of the following system:

 $5x - y \ge 2$ $x - 4y \le -2$

A

Q.3(8 points): Dr. Steve is saving money to send his children to college. How much will he need to invest now at 8% compounded quarterly if he wants the accumulated value of the investment to be \$24,000 in 10 years?

Q.4(8 points): If the cost of living is expected to increase at the rate of 3% compounded annually each year for the next 5 years. What will the cost then be of goods priced at \$50 now?

Q.5(12 points): (i) Dan needs to borrow \$15,000 for a new machine for his auto repair shop. He obtains a 2-year discounted loan at 12% interest. How much must he repay to settle his debt?

> (ii) If Dan was offered a simple interest loan of \$15,000 at 14% for 2-years. Would this be a better offer than the discounted loan? Explain your answer.

Q.7(12 points): Use <u>the geometric approach (Graphing)</u> to solve the following linear programming problem

Minimize Z = 3x + 6y subject to the following constraints:

 $x+4y \ge 20$ $2x+3y \ge 30$ $x \ge 0, y \ge 0$

Q.8(12 points): Use *the simplex method* to solve the following linear programming problem.

Maximize $P = 2x_1 + x_2 + 3x_3$	subject to the following constraints:
	$x_1 + x_2 + x_3 \le 10$
	$x_2 + x_3 \le 4$
	$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

 $\begin{array}{ll} \mbox{Minimize} \ \ C=4x_1+2x_2 & \mbox{subject to the following constraints:} \\ x_1+2x_2 \geq 4 \\ x_1+4x_2 \geq 6 \\ x_1 \geq 0, x_2 \geq 0 \end{array}$

(i) minimize C using the *Duality Principle*.

(ii) minimize C using the <u>method of mixed constraints</u>.

Α

It takes 4 minutes to pack model Q while model R takes 2 minutes to pack. The company finds that there are no more than 4 hours per day for assembly and no more than 1 hour for packing. <u>(1 hour = 60 minutes)</u> If the company makes a \$2 profit on each model Q sold and a \$3 profit on each model R sold.

- (i) Write the linear programming system that maximizes the profit showing the objective function and the constraints.
- (ii) Solve the system using any appropriate method.

Q.10(8 points):