Prince Sultan University

Department of Mathematical Sciences Major II Exam A

Semester I, 2010 Fall (101) December 11, 2010

MATH 101 – Finite Mathematics

Time Allowed : 100 minutes Maximum Points: 100 points

Name of the student:		

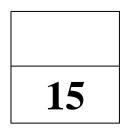
ID number : _____

Section : _____

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 12 problems, some with several parts and a total of 7 pages. Make sure your paper has all these problems.

Question	Maximum score	Your Score		
Q.1 , Q.2	18			
Q.3 , Q.4	16			
Q.5 , Q.6 , Q.7 , Q.8	28			
Q.9 , Q.10	18			
Q.11 , Q12	20			
Total	100			



Q.1 (6 points) Write True (T) or False (F) for each of the following statements.

- 1) If a linear programming problem has a solution, it is located at the center of the set of feasible points.
- 2) The following is a standard minimization problem: Minimize C = x₁+2x₂+x₃ Subject to the constraints 4x₁-3x₂-x₃ ≥ 3 x₁+x₂+x₃ ≥ -10 2x₁+x₂-x₃ ≥ 0 x₁ ≥ 0 , x₂ ≥ 0 , and x₃ ≥ 0
 3) Shortening the period needed to pay off a loan lowers the total interest paid.
 4) \$1,000 invested at 7% compounded annually for 1- *year* produces more interest than investing \$1,000 at 7% simple interest for 1-*year*.
 5) Investing at 9% compounded monthly produces more interest than investing at 9% compounded annually?
 - 6) Every minimization problem can be converted into a maximization problem.

(b) row 3, col. 1

Q.2 (12 points) Circle the correct answer.

1) The pivot element in the following tableau is located in:

Ρ	x_1	x_2	<i>x</i> ₃	S_1	S_2	<i>s</i> ₃	RHS	
0	-1	2	1	1	0	0	200	
0	0	-1	2	0	1	0	30	
0	2	0	4	0	0	1	RHS 200 30 50	
_1	1	-2	3	0	1	0	30	

(a) row 1 , col. 3

(c) row 3 , col. 2

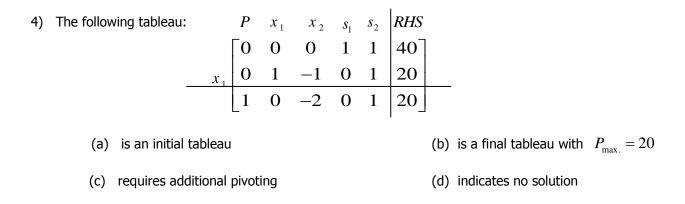
(d) No pivot

 The solution of the standard minimum problem that has been solved by the <u>Duality Principle</u> and has the following final tableau is:

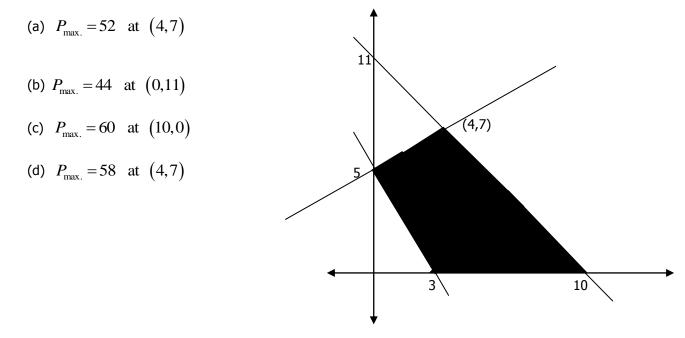
	Р	<i>y</i> ₁	<i>y</i> ₂	у ₃	S_1	s_2	RHS	
	$\begin{bmatrix} 0 \end{bmatrix}$	1	1	1	1	0	2	
	0	-1	1	0	-1	1	RHS 2 3	
	1	4	1	0	5	0	15	
(a) $C_{\min} = 15$, $x_1 = 2$, $x_2 = 3$					<i>x</i> ₂ =	3	(b) $C_{\text{min.}} = 15$, $x_1 = 5$, $x_2 = 0$	
(c) $C_{\min} = 15$, $x_1 = 5$, $x_2 = 1$					$x_{2} = 1$	1	(d) $C_{\min} = -15$, $x_1 = 5$, $x_2 = 0$	

3) A loan of 200 SR is made for 4 years at a simple interest rate 5%. What is the interest?

(a) 10 SR b) 210.2 SR c) 40 SR d) 240 SR



5) The maximum value of P = 6x + 4y over the bounded region given below is:



- 6) The approximate number of years needed for any amount of money to quadruple(become four times) if invested at a rate of 5% compounded continuously is:
 - (a) 28 years (b) 20 years (c) 30 years (d) 25 years
- 7) The effective rate of interest for 10% compounded monthly is:
 - (a) 10.52% (b) 10.38% (c) 10.42% (d) 10.47%
- 8) Find the proceeds for a discounted loan of 45000 SR repaid in 20 months at 8%.
 - (a) 51000 SR (b) 117000 SR (c) 39000 SR (d) 41000 SR

Q.3 (10 points) Consider the following system of linear inequalities

 $\begin{cases} 3x + y \ge 6\\ 3x + 4y \ge 12\\ x \ge 0 \quad , \quad y \ge 0 \end{cases}$

- (i) Graph the system and determine whether the graph is bounded or unbounded.
- (ii) Use the graph to find the maximum and minimum(if any) of the objective function Z = 15x + 20y

Q.4 (6 points) A beverage company produces 2 colas: regular and diet. It costs \$10 to produce a carton of regular cola, and \$12 to produce a carton of diet cola. The company can produce a total of at most 5000 cartons of cola, and has a daily budget of no more than \$3000 to cover production costs. The profit is \$2 on each carton of regular cola, and \$2.5 on each carton of diet cola. How many cartons of each type of cola should the company produce in order to maximize its profit?

Set up the Linear Programming Problem without solving.

Q.5 (10 points) A bank offers you two investment plans, plan A is investing 50000 SR at 9% simple interest rate for 12 years . Plan B is investing 45000 SR at 8% compounded quarterly for 10 years . Which plan will you take? (The plan that gives more interest)

Q.6 (6 points) An initial investment of \$4000 grows to \$4884 in five years. If interest is compounded monthly, find the rate of interest compounded monthly that is earned by the money.

Q.7 (6 points) If \$2000 is invested in an account that earns 6.5% simple interest per year. How much is in the account after 20 months?

Q.8 (6 points) Omar had begun his Individual Retirement Account (IRA) at the age 30. He deposits 1000 SR every six months at an interest rate of 5% compounded semiannually. What would his IRA be worth at age 65?

Q.9 (6 points) John bought a Mercedes, taking out a loan for \$30000 to help pay for it. He must re-pay the loan in equal monthly payments for 10 years, with an annual interest rate of 6% . what is his monthly payment?

<u>Q.10 (12 points)</u>	Use the Simples Method to solve the Linear Programming Problem				
	Maximize $P = 50x_1 + 80x_2$ subject to:				
	$x_1 + 2x_2 \le 32$				
	$3x_1 + 4x_2 \le 84$				
	$x_1 \ge 0$, $x_2 \ge 0$			

<u>Q.11 (8 points)</u>

ints) Find the Dual problem of the following minimum problem. Don't Solve

Minimize $C = 20x_1 + 16x_2$ Subject to the constraints $4x_1 + 3x_2 \ge 120$ $4x_1 + 8x_2 \ge 160$ $2x_1 + 4x_2 \ge 55$ $x_1 \ge 0$ and $x_2 \ge 0$

Q.12 (12 points) Use the Simples Method to solve the Linear Programming Problem Minimize $C = -5x_1 + 10x_2 + 15x_3$ Subject to the constraints $2x_1 + 3x_2 + x_3 \le 24$ $x_1 - 2x_2 - 2x_3 \ge 1$

$$\begin{array}{l} 2x_1 + 3x_2 + x_3 \leq 24 \\ x_1 - 2x_2 - 2x_3 \geq 1 \\ x_1 \geq 0 \ , \ x_2 \geq 0 \ , \ \text{and} \ x_3 \geq 0 \end{array}$$