Prince Sultan University

Department of Mathematical Sciences

Major I Exam A Semester I, 2008 Fall (081) 11 November 2008

:_____

MATH 101 – Finite Mathematics

Time Allowed : 90 minutes Maximum Points: 100 points

Name of the student:

ID number

Section

Instructor's Name:

Important Instructions:

1. You may use a scientific calculator that does not have programming or graphing capabilities.

:_____

- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your <u>mobile</u> phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- This examination has 11 problems, some with several parts and a total of 8 pages. Make sure your paper has all these problems.

Question	Maximum score	Your Score
Q.1	8	
Q.2	12	
Q.3	6	
Q.4	9	
Q.5	9	
Q.6	10	
Q.7	8	
Q.8	8	
Q.9	10	
Q.10	10	
Q.11	10	
Total	100	

<u>Q.1 (8 points)</u> *Write True(T) or False(F) for each of the following statements.*

```
1) x = -3, y = 2 is the solution for the following system of linear equations.

3x - 5y = -19

-4x + 4y = 20
```

2) Matrices of the same dimensions can always be multiplied.

- 3) All parallel lines must have the same slopes and the same y int ercepts
- 4) Every straight line has a slope.
- 5) The system x + y + z = 1; x = y; y = z; y = 1 is inconsistent.
- 6) The inverse of $\begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$ is $\begin{bmatrix} -2 & -3 \\ 1 & 2 \end{bmatrix}$
- 7) The following Reduced Row Echelon Form of the augmented matrix of a system of linear equations has no solution.
 - $\begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- 8) A square matrix will always have an inverse.

<u>Q.2 (12 points)</u> <u>Circle the correct answer.</u>

1) For the following augmented matrix, determine which of the following statements is true about the associated system of linear equations:

$$\begin{bmatrix} 1 & 0 & 3 & 6 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) The system has no solution.
- (b) The system has only one solution; x = -9, y = -4, z = 5
- (c) The general solution is: x = 6-3z, y = -4, z: any real number
- (d) More row operations is needed to put the matrix in RREF

2) The *y*-int*ercept* of the line 2x-3y = -6 is:

(a) (0,-6) (b) (0,2) (c) (2,0) (d) (-3,0)

3) Which of the following matrices is in reduced row echelon form.

(a)	$\begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	0 6 1	-3 3 8	$\begin{vmatrix} -8 \\ 3 \\ 2 \end{vmatrix}$	(b)	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	0 1 1	0 0 1	-3 3 8	$\begin{bmatrix} -8\\3\\2\end{bmatrix}$	
(c)	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$	0 0 0	-3 0 3	$\begin{bmatrix} -8 \\ 3 \\ 2 \end{bmatrix}$	(d)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0 1 0	0 0 1	-3 3 8	$\begin{bmatrix} -8\\3\\2 \end{bmatrix}$	

4) Which values of x and y make the following true?

$$\begin{bmatrix} x+y & 4 \\ 8 & 0 \end{bmatrix} = \begin{bmatrix} 8 & 4 \\ x-y & 0 \end{bmatrix}$$
(a) $x=8$, $y=0$ (b) $x=6$, $y=2$ (c) $x=10$, $y=2$ (d) $x=4$, $y=4$

5) What is the value of (k) so that the following system has infinitely many solutions?

$$4x+2y=5$$

 $-12x+ky=-15$
(a) $k=4$ (b) $k=-4$ (c) $k=-6$ (d) $k=6$

6) A general equation of the line having a slope = 4 and containing the point (-3, 4) is:

(a)
$$4x - y = -16$$
 (b) $4x + y = 12$ (c) $4x + y = 16$ (d) $4x - y = 12$

7) If A is a 3×4 matrix, and B.B.A is defined. What is the dimension of matrix B?

(a) 3×4 (b) 4×3 (c) 4×4 (d) 3×3

8) find the product:
$$\begin{bmatrix} -2 & -2 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} -5 & 2 & 1 \\ 5 & -8 & -6 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 0 & 12 \\ -30 & 36 \end{bmatrix}$$
 b)
$$\begin{bmatrix} -5 & 12 & 10 \\ -30 & -8 & -26 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 0 & 12 & 10 \\ -30 & 36 & 26 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 0 & 12 & 10 \\ -30 & -26 & -6 \end{bmatrix}$$

<u>Q.3 (6 points)</u> Find an equation for the line with the given properties. Parallel to the line: 4x-9y=2; containing the point (-4,-2) (Express the answer in general form)

<u>Q.4 (9 points)</u> The supply and demand equations for a certain commodity have been given by the Equations, where p is the unit price in dollars and S and D are in thousands of units S = 15p+6; D = -15p+456

(i) Find the market price.

- (ii) What quantity of the commodity is demanded at this market price?
- (iii) If the supplier decided to sell the commodity for \$20 per unit, will there be a shortage (less) or surplus (more) of the commodity in the market?
- **<u>Q.5 (9 points)</u>** A music Store finds that, when the store offers the CDs at \$10 per CD, it sells 10,000 CD's per week. Dropping the price to \$7.5 per CD has the effect of increasing sales to 17,500 CD's per week.
 - (i) Use this data to set up a demand equation.

(ii) If this trend continues, how many CD's does the store expect to sell if it further drops the price to \$6 per CD?

<u>Q.6 (10 points)</u> An Ice company sells bags of ice for \$1.15 per bag. The production cost per bag is \$0.85 and the weekly fixed costs are \$7500.

- (i) Determine the revenue R from selling x bags of ice in a week.
- (ii) Determine the cost C of producing x bags of ice per week.
- (iii) Determine the profit P from selling x bags of ice per week.

(iv) Determine the break-even point.

<u>Q.7 (8 points)</u> Solve the following system of equations using the *elimination method*.

x - y + 2z = 42x - y = 6x + y - 3z = 0

<u>Q.8 (8 points)</u> Use the matrices below to perform the indicated operation(s), if possible

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix} , \quad B = \begin{bmatrix} 5 & 2 & 3 \\ 1 & 6 & -1 \end{bmatrix} , \text{ and } C = \begin{bmatrix} 3 & 1 \\ 2 & -1 \\ 4 & 1 \end{bmatrix}$$

(i)
$$AI_2 + B.C$$

(ii) A . B + 2C

<u>Q.9 (10 points)</u>

(i) Determine whether the given pair of lines are parallel, intersecting, or coincident? <u>Give the reason.</u>

$$L: 2x - 4y = 2$$
$$M: x + 2y = -4$$

(i) The given pair of lines intersect. Find the point of intersection.

$$9x + 2y = 23$$
$$x - y = -6$$

<u>Q.10 (10 points)</u> Consider the following system of linear equations.

x+2y-z=6 2x-y+3z=-133x-2y+3z=-16

- (i) Use the Reduced Row Echelon Form (RREF) to solve the system
- (ii) Give the solution of the system, if any.
- (iii) Is the system <u>consistent or inconsistent?</u>

 Q.11 (10 points)
 (i)
 Find the inverse of:
 $\begin{bmatrix}
 1 & 2 & 1 \\
 1 & 1 & 2 \\
 2 & 0 & 2
 \end{bmatrix}$

(ii) **Use the inverse** to solve the following system of linear equations.

x + 2y + z = 8x + y + 2z = -22x + 2z = 4