

Prince Sultan University

Department of Mathematical Sciences

Major I Exam

Semester II, 2011 A SPRING (102) March 19, 2011

MATH 101 – Finite Mathematics

Time Allowed: 90 minutesMaximum Points:100 points

Name of the stu	ent:	
ID number	:	
Section	:	

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 12 problems, some with several parts and a total of 7 pages. Make sure your paper has all these problems.

Question	Maximum score	Your Score				
Q.1 , Q.2	18					
Q.3 , Q.4	16					
Q.5 , Q.6 , Q.7	21					
Q.8 , Q.9	17					
Q.10 , Q.11	19					
Q.12	9					
Total	100					

Q.1 (6 points) Write True (T) or False (F) for each of the following statements.

1) If a system of linear equations is inconsistent, then it has infinitely many solutions.

2) The system
$$x + y + z = 1$$

 $y = 1 + z$ has infinitely many solutions

3) If A.B and B.A are both defined, then A and B may have different dimensions.

4) If AX = B for any square matrix A, then $X = A^{-1}B$.

5) The inverse matrix of $A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}$ is $A^{-1} = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$

6) x = 3, y = -2 is the solution of the following system of linear equations 3x + 4y = 1x - 2y = 7

Q.2 (12 points) Circle the correct answer.

1) Find the equation of the horizontal line containing the point (-5, -6).

(a) x = -5 (b) y = -6 (c) x = -6 (d) y = 6

2) 15 pens and 7 pencils cost a total of \$7.70. 8 pens and 10 pencils cost a total of \$9.15. What linear system of equations represents this problem?

(a) {	(7x+15y=7.70) (b)	$\int 15x + 7y = 7.70$	(c)	$\int 15x + 7y = 7.70$	(d) .	$\int 7x + 15y = 7.70$
	8x + 10y = 9.15 (b)	$\int 10x + 8y = 9.15$	(C)	8x + 10y = 9.15	(u)	10x + 8y = 9.15

3) Which of the following matrices is in reduced row echelon form.

(2)	1	0	-7	-9	(b)	1	0	-7 -9	1	1 –7	-9	(d)	1	-8	-7	-9
(a)	7	1	-9	-8_		0	1	-9 -8)	1 –9	-8		0	1	-9	-8_

- 4) Find the market price for the given supply and demand equations. S = 32p + 1000 and D = 1900 28p
 - (a) p = 15 (b) p = 48 (c) p = 17 (d) p = 14
- 5) Find the break-even point for the cost *C* of production and the revenue *R* if C = 11x + 650 and R = 16x(a) x = 2080 (b) x = 120 (c) x = 135 (d) x = 130

6) The equation of the line passing through the point (-1,2) and parallel to the line y = -3x + 3 is:

(a) y = -3x + 5 (b) y = -3x - 1 (c) y = 3x - 1 (d) y = -3x - 5

- 7) Suppose that the cost of making 20 radios is \$2000 and the cost of making 40 radios is \$3600. Find the cost of making 10 radios
 (a) \$1000
 (b) \$900
 (c) \$800
 (d) \$1200
- 8) If matrix *A* is a 3×3 matrix, matrix *B* is a 3×4 matrix, and matrix *C* is a 3×3 matrix, which one of the following matrix operation statements below *can* be performed?

(a) (B+C). A (b) $(B \cdot A) - C$ (c) $C \cdot B^{-1}$ (d) $(A-C) \cdot B$

Q.3 (10 points) A company produces a product for which the cost per unit is \$4 and the fixed cost is \$40,000. If the selling price for each unit is \$8.

(i) Find the number of units that must be sold for the company to break even.

(ii) Find the number of units that must be sold for the company to earn \$50,000

(iii) If the company determined that they can only sell 8,000 units. What should the selling price be in order to guarantee no loss?

<u>Q.4 (6 points)</u> Given the three matrices below, find x and y so that 3A - B = C

$$A = \begin{bmatrix} 2 & x \\ 4 & y \end{bmatrix} , \quad B = \begin{bmatrix} 1 & -1 \\ 4 & 3 \end{bmatrix} , \quad \text{and} \quad C = \begin{bmatrix} 5 & -2 \\ 8 & 9 \end{bmatrix}$$

Q.5 (10 points)

(i) Determine whether the given pair of lines are parallel, intersecting, or coincident? Give the reason.

$$L : 2x + 5y = -24$$
$$M : 4x + 10y = 14$$

(ii) The given pair of lines intersect. Find the point of intersection. *L*: 9x + 4y = 38

$$M: x-5y=-23$$

Q.6 (7 points) Use the matrices below to perform the indicated operation(s), if possible

$$A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \quad , \quad B = \begin{bmatrix} 1 & -2 & 3 \\ -1 & 4 & -2 \end{bmatrix} \quad , \quad \text{and} \quad C = \begin{bmatrix} 3 & 1 \\ 4 & -1 \\ 0 & 2 \end{bmatrix}$$

17

(i) $2A J_2 + BC$

(ii) CA - 3B

Q.7 (4 points) Use the following (*RREF*) augmented matrix to give one possible solution of the system of linear equations it represents.

$$\begin{bmatrix} 1 & 0 & 2 & | -2 \\ 0 & 1 & 6 & | -9 \end{bmatrix}$$

Q.8 (8 points) A movie theater charges \$7 for adults, \$3 for children, and \$2.50 for senior citizens. One day the theater sold 468 tickets and collected \$1731 in receipts. There were 2 times as many children's tickets sold as adult tickets. How many adults, children, and senior citizens went to the movies that day?

Q.9 (9 points) The market price for a certain product is \$15 per unit and occurs when 300 units

- are produced. At a price of \$9, no units are produced, and, at a price of \$20, no units are purchased.
 - (i) Find the supply equation

(ii) Find the demand equation

(iii) How many units will be purchased at a price of \$12

Q.10 (9 points) Determine the solution of the following system using the <u>Addition/Elimination Method</u>. -2x+3y+4z=50-x+3y-z=1

5x - y + z = 11

Q.11 (10 points) Consider the following system of linear equations. 2x + y + z = 3

$$x + z = 6$$

$$x + y + z = -2$$

(i) Find the inverse matrix of the matrix of the coefficients.

Q.12 (9 points) Consider the following system of linear equations.

$$x + 2y = 4$$

$$y + z = -1$$

$$3x + z = 4$$

(i) Use the Reduced Row Echelon Form (RREF) to solve the system

(ii) Is the system consistent or inconsistent? If yes, give the solution.