

Name: _____

ID Number # _____

Q1. (5 points) We consider the following machine number

01 000000010 1011010000100000000......00

Find the decimal number that represents this machine number.

Q2. (6 points)

We consider the function $f(x) = \frac{3}{x} + 2x$ with points $x_0 = \frac{1}{2}$, $x_1 = 1$, $x_2 = \frac{3}{2}$, $x_3 = 2$ and $x_4 = \frac{5}{2}$. Find the cubic Lagrange polynomial for the approximation of f(1.2) and find the relative error.

Q3. (6 points) Use the bisection method to find the third iteration of the root of the equation $x^3 - 3x - \frac{1}{2} = 0$ in the interval [1,2] and find a bound of the estimated absolute error.

Q4. (13 points) We consider the following iterative sequences:

- a) $x_{n+1} = g_1(x_n)$
- b) $x_{n+1} = g_2(x_n)$

where g_1 and g_2 are given by :

$$g_1(x) = \frac{1}{2}(x^2 - 3)$$
 and $g_2(x) = \sqrt{2x + 3}$

- 1) Find the values of the fixed points of the functions g_1 and g_2
- 2) Which of the following iterations is suitable to find the root of the equation $x^2 2x 3 = 0$ in the interval [2,4].
- 3) Estimate the number of iterations required to achieve 10^{-3} accuracy using the fixed-point method, taking $x_0 = \frac{5}{2}$.

Q5. (3 points) Find the multiplicity of the root $\alpha = 1$ of the equation (x-1)Ln(x) = 0