- 1) a) Find the first partial derivatives to the function $F(x,y) = x^2 y \int_{y^2}^{2x} \sin e^{-t} dt$. b) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $yz + \cos x \ln y = yz^2$.

- 2) a) If z=f(x,y) has continuous second-order partial derivatives and $x=r^2+rs$ and y=3rs, find $\frac{\partial z}{\partial r}$ and $\frac{\partial^2 z}{\partial r^2}$. Then, apply your result to evaluate $\frac{\partial^2 z}{\partial r^2}$ when r=1 and s=0 for the function $z=f(x,y)=xe^{xy}$.
- b) Given that the function $g(x,y)=y^2-2y\cos x$ has the critical points $A(0,1), B(\pi,-1), C(2\pi,1), D\left(\frac{\pi}{2},0\right), E\left(\frac{3\pi}{2},0\right)$ on the interval [-1,7], find the local maximum and minimum values and saddle point(s) of g if they exist.

3) Evaluate the double integrals:

a)
$$\int_0^1 \int_{-3}^3 \frac{xy^2}{x^2+1} dy dx$$

b)
$$\int_0^1 \int_x^1 e^{x/y} dy \, dx$$

a)
$$\int_0^1 \int_{-3}^3 \frac{xy^2}{x^2+1} dy dx$$

b) $\int_0^1 \int_x^1 e^{x/y} dy dx$
c) $\int_{-2}^2 \int_0^{\sqrt{4-x^2}} \cos(x^2 + y^2) dy dx$

- 4) a) Find the area of the part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 4$.
 - b) Evaluate the triple integral: $\int_0^\pi \int_0^y \int_0^x \sin(x+y+z) dz dx dy$.

- 5) a) Find the volume of the solid that is enclosed by the cone $z=\sqrt{x^2+y^2}$ and the sphere $x^2+y^2+z^2=2$.
 - b) Evaluate $\iiint_E (x^2+y^2+z^2)^{\frac{3}{2}} dV$, where E lies between the spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=4$