- 1) Consider the vectors u = (2, -1, 3), v = (1, -3, 4) and w = (2, 2, 1).
 - a) Find the norm of u 2v and the distance between u and w.
 - b) Find a vector which is orthogonal to both u and v.
 - c) Calculate the scalar triple product $u. (v \times w)$. What is the volume of the parallelepiped in 3 –space determined by the vectors u, v and w.
 - d) Find the cosine of the angle between the vectors *u* and *w*.
 - e) Find the vector component of u along v and the vector component of u orthogonal to v.

- 2) a) Find the equation of the plane φ passing through the points P(2, -1, 4), Q(3, 1, -1) and R(1, 1, 1).
 - b) Find the parametric equations of the line L passing through $P_1(2,1,3)$ and $P_2(1,2,2)$,
 - c) Find the distance between the line *L* and the plane φ .

- 3) Consider the linear operators $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ where T has the standard matrix representation $[T] = \begin{bmatrix} 1 & 3 \\ 3 & 0 \end{bmatrix}$ and S is the rotational operator counterclockwise by an angle $\frac{\pi}{6}$. a) Is the operator T one to one ? Onto? Why?
 - b) Find the vector v = (ToS)(u), where $u = (\frac{-1}{2}, \frac{\sqrt{3}}{2})$.
 - c) Find T(-1,2) and S(1,1).
 - d) Find $(SoT)^{-1}(w)$ if exists, where w = (1,1).

4) Determine whether the following vectors span R^3 : $v_1 = (2, -1, 3), v_2 = (4, 1, 2), v_3 = (8, -1, 8).$