

# **Prince Sultan University**

### Department of Mathematical Sciences Major I Exam

Semester I, 2014 FALL (151) October 25, 2015

## MATH 211 – Business Calculus

### Time Allowed : 90 minutes Maximum Points: 100 points

| Name of the student: |  |
|----------------------|--|
|                      |  |

ID number

Section

### Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.

:

- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your <u>mobile</u> phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 14 problems, some with several parts and a total of 6 pages. Make sure your paper has all these problems.

| Question                  | Maximum<br>score | Your<br>Score |
|---------------------------|------------------|---------------|
| Q.1 , Q.2 , Q.3           | 14               |               |
| Q.4 , Q.5 , Q.6           | 19               |               |
| Q.7 , Q.8 ,               | 15               |               |
| Q.9 , Q.10                | 12               |               |
| Q.11 , Q.12 , Q.13 , Q.14 | 20               |               |
|                           |                  |               |
| Total                     | 80               |               |



<u>**0.1** (5 points)</u>: Compute the indicated values of the given function:

a) 
$$f(x) = \begin{cases} x^2 - 5 & \text{if } x < 1 \\ 4 & \text{if } x = 1 \\ 7 - 2x & \text{if } x > 1 \end{cases}$$
  
Find: a)  $f(-3) =$   
b)  $f(1) =$   
c)  $f(2) =$   
b) Let  $f(x) = x^3 + 2$  and  $g(x) = x + 3$ ; Find and Simplify  $f(g(x))$ 

**<u>O.2 (3 points)</u>**: Find the domain of the function  $f(x) = \frac{x+1}{x(x^2-4)}$ 

<u>**0.3** (6 points)</u>: (i) Find the equation of the line passing through (-4,1) and (2,5)

(ii) Find the point(s) of intersection (if any) of the given pair of curves. 3y-x=5 and y+3x=9 <u>*O.4 (5 points):*</u> Supply and Demand equations are given for a particular commodity in terms of the level of production x. S(x) = 2x + 30; D(x) = 360 - x

a) Find the <u>equilibrium production level</u>,  $x_e$  and the <u>equilibrium price</u>,  $p_e$ .

b) For what values of x is there a market surplus? A market shortage?

<u>**0.5 (5 points)**</u>: Find an equation for the tangent line to the curve  $y = \sqrt{4x^2 + 5x}$  at the point where x = 1.



**b**) 
$$\lim_{x \to \infty} \frac{2 - 9x^3}{6x^3 + x - 3}$$

c) 
$$\lim_{x \to 36} \frac{\sqrt{x} - 6}{x - 36}$$

**O.7 (6 points)**: For the function, 
$$f(x) = \begin{cases} x^2 + x - 1 & -3 < x < -1 \\ x + 1 & -1 \le x < 1 \\ 3 - x^2 & 1 \le x < 2 \end{cases}$$

a) Is the function continuous at x = -1 (Explain why or why not)

**b**) Is the function continuous at x = 1 (**Explain why or why not**)

<u>*Q.8 (9 points)*</u>: Find the derivative: (Simplify)  $- 2 r^3$ 

a) 
$$y = 3\sqrt{x} - \frac{2}{x^4} + \frac{x^3}{9}$$

b) 
$$f(x) = \frac{5x^2 - 7x + 1}{5 - 4x}$$

c) 
$$f(x) = (6x-4)(x^2+5)$$

**<u>0.9 (7 points)</u>:** a) Find  $\frac{dy}{dx}$  if  $y = u^3 + 2u^2 - 3$  and  $u = x^2 + x - 1$ . Simplify your answer

b) Find 
$$\frac{dy}{dx}$$
 given:  $5x - x^2y^3 = 2y$ 

<u>*Q.10 (5 points):*</u> An appliance manufacturer can sell refrigerators for \$1,500 apiece. The manufacturer's total cost consists of a fixed overhead of \$30,000 plus production cost of \$1,000 per refrigerator.

a) How many refrigerators must be sold for the manufacturer to break even?

b) How many refrigerators must be sold for the manufacturer to make a \$10,000 profit?

<u>*Q.11 (5 points):*</u> At a certain factory, the total cost of manufacturing units during the daily production run is  $C(q) = q^2 + 2q + 260$  dollars. On a typical day, q(t) = 15t units are manufactured during the first hours of a production run. How much is spent during the first 3 hours of production?

<u>*Q.12 (5 points):*</u> At a certain factory, the total cost of manufacturing *q* units during the daily production run is  $C(q) = 0.3q^2 + 0.8q + 800$  dollars. It has been determined that approximately  $q(t) = t^2 + 80t$  units are manufactured during the first *t* hours of a production run. Compute the rate at which the total manufacturing cost is changing with respect to time 2 hours after production begins.

<u>**0.13 (5 points)**</u>: If the total cost of manufacturing q units of a certain commodity is  $C(q) = 3q^2 + q + 500$ .

- a) Use marginal analysis to estimate the cost of producing the  $31^{st}$  unit, in dollars.
- b) What is the actual cost of producing the  $31^{st}$  unit?

<u>*Q.14 (5 points):*</u> At a certain factory, the daily output is  $Q(L) = 60,000L^{1/3}$  units, where *L* denotes the size of the labor force measured in worker-hours. Currently 1,000 worker-hours of labor are used each day. Estimate the effect on output that will be produced if the labor force is cut to 940 worker-hours.