

Prince Sultan University

Department of Mathematical Sciences

Major II Exam

Semester I, 2013 FALL (131) December 04, 2013

MATH 101 – Finite Mathematics

Time Allowed : 90 minutes Maximum Points: 80 points

Name of the stu	ent:
ID number	:
Section	

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled
- 7. This examination has 12 problems, some with several parts and a total of 7 pages. Make sure your paper has all these problems.

Question	Maximum score	Your Score
Q.1 , Q.2	23	
Q.3 , Q.4	13	
Q.5	9	
Q.6 , Q.7 , Q.8 , Q.9 , Q.10	21	
Q.11 , Q.12	14	
Total	80	

Q.1 (15 points) Circle the correct answer.

1) Find $n(A \cup B)$ given that n(A) = 79, n(B) = 76, and $n(A \cap B) = 13$ (a) 145 (b) 155 (c) 168 (d) 142

2) The pivot element in the following tableau is located in:

	X	У	Z.	S_1	S_2	<i>s</i> ₃	S_4	Р	RHS							
	[-1	2	1	1	0	0	0	0	3							
	0	-1	2	0	1	0	0	0	3							
	2	0	4	0	0	1	0	0	5							
	3	3	-3	0	0	0	1	0	6							
	1	-4	3	0	1	0	1	1	12	_						
(a) r	ow 1	, col.	2		(1	b) r	ow 3	3, c	ol. 2		(c) row	v4,col	. 2	(d) N	o pivo	t

The solution of the standard minimum problem that has been solved by the <u>Duality Principle</u> and has the following final tableau is:

$u v w s_{1}$	$s_2 P F$	RHS	
$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	0 0	2	
-1 1 0 -	1 1 0	3	
4 1 0 5	5 0 1 1	15	
(a) $C_{\min} = 15$, $x = 2$ (c) $C_{\min} = 15$, $x = 5$,	y = 3 $y = 1$	(b) $C_{\text{min.}} = 15$, $x = 5$, $y = 0$ (d) $C_{\text{min.}} = -15$, $x = 5$, $y = 0$	I
4) The following tableau:	x y s	$s_1 s_2 P RHS$	
	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	1 1 0 40	
	1 -1 0	0 1 0 20	
	$\begin{bmatrix} 0 & -2 & 0 \end{bmatrix}$	0 1 1 20	

(a) is an initial tableau (b) is a final tableau with $P_{\text{max.}} = 20$

(d) indicates no solution

- (c) requires additional pivoting
- 5) How many license plates consisting of two letters followed by four digits are possible? (Use the English alphabet with repetition of letters and numbers allowed)
 - (a) $\frac{26^2 10^4}{2! 4!}$ (b) $26^2 10^4$ (c) $C(26,2) \cdot C(10,4)$ (d) $P(26,2) \cdot P(10,4)$

6) How many nine-letter words can be formed from the letters of the word "Classroom"?

(a) 90,720	(b) 3,024	(c) 387,420,489	(d) 362,880

- 7) A classroom has 20 chairs and 12 students. If the student chooses to sit wherever he wants, in how many ways can this be done?
 - (a) C(20,12) (b) P(20,12) (c) $\frac{20!}{12!}$ (d) 240
- 8) Simplify the expression $\frac{70 \cdot 69 \cdot 68 \cdot 67 \cdot 66}{70!}$ (a) $\frac{1}{65!}$ (b) 65! (c) $\frac{1}{66}$ (d) $\frac{1}{65}$
- 9) How many 5-letter words can be made using the first10 letters of the alphabet?Repetition not allowed.
 - (a) 50 (b) 30,240 (c) 252 (d) 9,765,625
- 10) Five non-permanent seats in the UN Security Council are to be selected from among 10 countries. How many such sets of 5 nations are there?
 (a) 50
 (b) 252
 (c) 30,240
 (d) 100,000

Q.2 (8 points) Consider the following system of linear inequalities

subject to the constraints:
$$\begin{cases} 4x + y \le 16 \\ -x + y \le 6 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

- (a) Graph the system
- (b) Use the graph to find the maximize the objective function P = 4x + 5y

Q.3 (5 points) A company produces two types of steel. Type I requires 2 hours of melting, 4 hours of cutting, and 10 hours of rolling per ton. Type II requires 5 hours of melting, 1 hour of cutting, and 5 hours of rolling per ton. 40 hours are available for melting, 20 hours for cutting, and 60 for rolling. Each ton of Type I produces \$240 profit, and each ton of Type II produces \$80 profit. How many tons of each type should the company produce to maximum its profit?

Set up the Linear Programming Problem without solving.

<u>**Q.4 (8 points)</u>** Solve the following minimum problem linear programming problem using the <u>**Dual problem**</u> Minimize C = x + 2y</u>

	$2x - 3y \ge 4$
Subject to the constraints	$x - y \ge 8$
Subject to the constraints	$3x + y \ge 4$
	$x \ge 0$, $y \ge 0$

<u>Q.5 (9 points)</u> Use the **<u>Simplex Method</u>** to solve the following linear programming problem: Maximize P = 2x + 3y

	Maximize	P = 2x + 3y
		$x + y \le 8$
subject to the	e constraints	$2x + y \ge 10$
subject to the		$x + y \ge 4$
		$x \ge 0, y \ge 0$

<u>Q.6 (4 points)</u> You are arranging 17 books by color. 8 of these books are brown, 4 are black, and 5 are red. How many different ways are there to arrange the books?

<u>O.7 (3 points)</u> How many <u>five-digit</u> numbers that are <u>even</u> can be formed from the digits 0 to 9 if repetition is allowed?

<u>Q.8 (6 points)</u> Consider the universal set *U*, and the sets *A*, *B*, and *C* given by $U = \{9,11,12,14,17,18,20\}$, $A = \{9,17,18\} B = \{11,12,17\}$, and $C = \{11,18\}$ Find a) $(A \cup B) \cap C$

b) *A*′∩*B*′

c) $A' \cup B$

<u>Q.9 (5 points)</u> On a single shelf we are to arrange 4 different computer books and 5 different mathematics books. In how many ways can this be done if the computer books are to be grouped together and the mathematics books are to be grouped together?

<u>Q.10 (3 points)</u> How many different types of homes are available if a builder offers a choice of 6 basic plans, 3 roof styles, and 2 exterior finishes?

Q.11 (6 points) A 4-person committee is selected out of two departments. Department A with 15 and department B with 20 people. In how many ways can the committee be selected if

- (a) 3 people are selected from A and 1 from B
- (b) 4 people are selected regardless of the department
- (c) at least 3 people are selected from department B

<u>Q.12 (8 points)</u> A survey of 100 television viewers revealed the following information: 35 watch comedies

- 39 watch game shows
- 27 watch movies
- 16 watch movies and game shows
- 15 watch comedies and game shows
- 10 watch both comedies and movies
- 3 watch all three
- (a) How many viewers watch none of these?
- (b) How many viewers watch comedies but not game shows?
- (c) How many viewers watch movies or comedies?
- (d) How many viewers do not watch movies?