1) Find and classify the critical points of the function

$$f(x,y) = y^2 - 2y \cos x, \quad 0 \le x \le 2\pi.$$

- 2) a) Show that $\lim_{(x,y)\to(2,0)} \frac{xy-2y}{(x-2)^2+y^2}$ does not exist.
 - b) If z = f(x, y), $x = r \cos \theta$, and $y = r \sin \theta$, find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ and then show that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$.

that
$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$
.

- 3) a) Find the surface area of the part of the surface $z=x^2+3y$ that lies above the triangular region in the xy-plane with vertices (0,0),(1,0), and (1,1).
 - b) Evaluate the double integrals:

(i)
$$\int_{-3}^{3} \int_{0}^{\sqrt{9-y^2}} \cos(x^2 + y^2) \, dx dy$$
 (ii) $\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} e^{x^4} dx \, dy$.

- 4) a) Evaluate the triple integral $\iiint_E (x^2+y^2+z^2) \, dV$, where E lies between the spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=4$.
- b) Evaluate the triple integral $\iiint_E y^2zdV$, where E is the solid lies within the cylinder $x^2+y^2=2y$, above the plane z=0, and below the cone $z=x^2+y^2$.