1) a) Show that $\lim_{(x,y)\to(0,0)} \frac{xy\ e^y}{5x^2+y^2}$ does not exist.

b) For the function $z = f(x,y) = \sqrt{9 - x^2 - y^2}$, find $\frac{\partial z}{\partial x \partial y}$ at the point (2,1). c) If w = f(x,y,z) and $x = 2st, y = s^2 \sin t$, $z = \cos(3st)$, find $\frac{\partial w}{\partial s}$ using the partial derivatives of f.

- 2) a) For the function $f(x,y) = y^3 + 3x^2y 6x^2 6y^2 + 2$, find the local maximum and minimum values and saddle points.
- b) Find the equation of the tangent plane to the graph of $f(x,y) = \sqrt{2x + 5e^{4y}}$ at the point P(2,0). Then, find the linear approximation to f(2.1,0.1).

- 3) a) Find the surface area of the part of the surface $z=x^2+2y$ that lies above the triangular region in the xy-plane with vertices (0,0),(2,0), and (2,2).
 - b) Evaluate the double integrals:

(i)
$$\int_0^3 \int_0^{\sqrt{9-x^2}} \cos(x^2 + y^2) dy dx$$
 (ii) $\int_0^8 \int_{\sqrt[3]{y}}^2 e^{x^4} dx dy$

- 4) a) Evaluate the triple integral $\iiint_E x^2 + y^2 dV$, where E lies between the spheres $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 9$.
- b) Evaluate the triple integral $\iiint_E x^2 dV$, where E is the solid lies within the cylinder $x^2 + y^2 = 1$, above the plane z = 0, and below the cone $z = 4x^2 + 4y^2$.