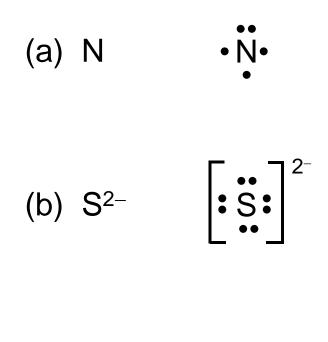

Chapter 8 Chemical Bonding I: Basic Concepts

8.1 Lewis Dot Symbols

- Valence electrons determine an element's chemistry.
- *Lewis dot symbols* represent the valence electrons of an atom as dots arranged around the atomic symbol.
- Most useful for main-group elements

Lewis Dot Symbols of the Main Group Elements

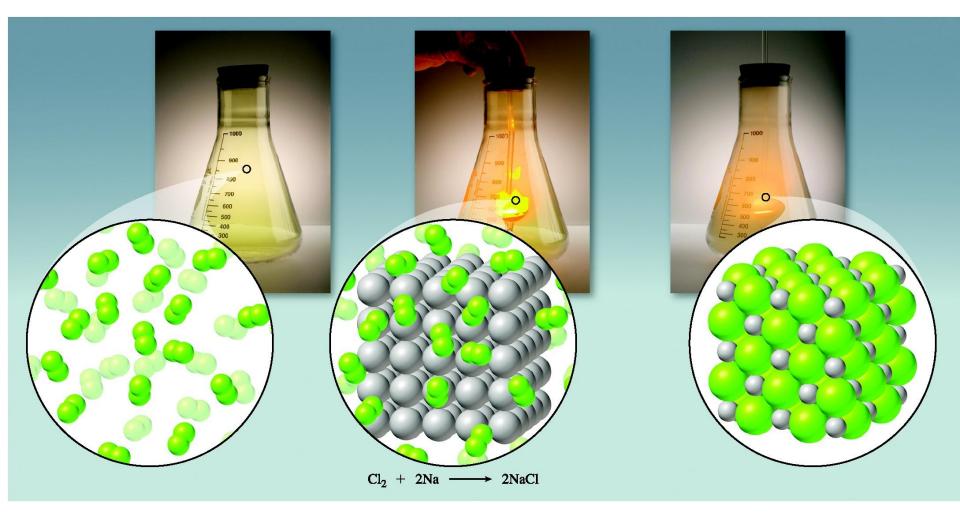

Write Lewis dot symbols for the following:

(a) N

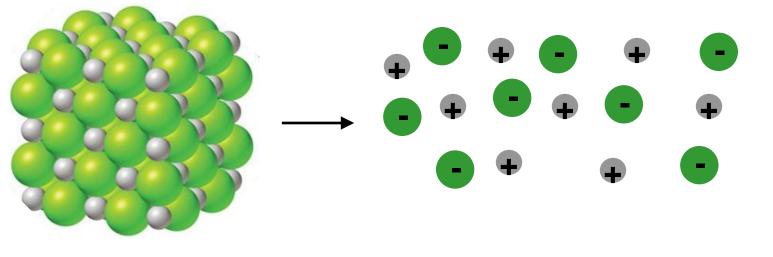
(b) S²⁻

(c) K⁺

Write Lewis dot symbols for the following:

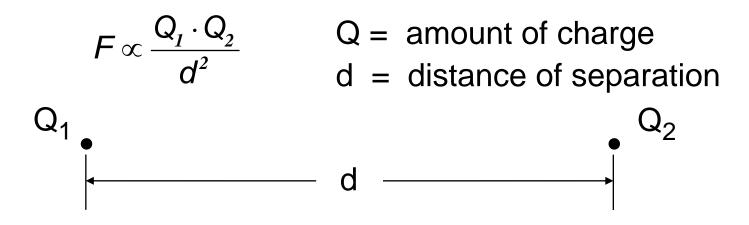

(c) K⁺ K⁺

8.2 Ionic Bonding


- **Ionic bond:** electrostatic force that holds oppositely charge particles together
- Formed between cations and anions
- Example

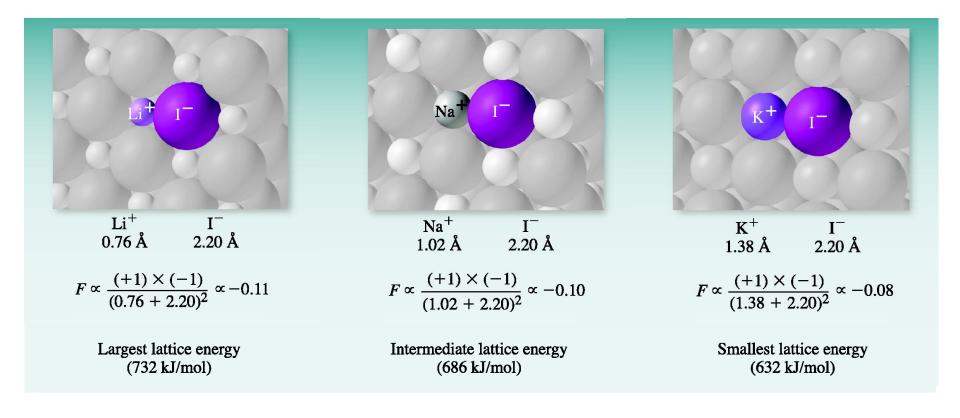
Na• + $: \overset{\bullet}{C} \overset{\bullet}{I} \longrightarrow Na^+$ + $: \overset{\bullet}{C} \overset{\bullet}{I} \overset{\bullet}{I}$ $IE_1 + EA_1 = 496 \text{ kJ/mol} - 349 \text{ kJ/mol} = 147 \text{ kJ/mol}$ m.p. = $801^{\circ}C$ $\Delta H_f^{\circ} = -410.9 \text{ kJ/mol}$

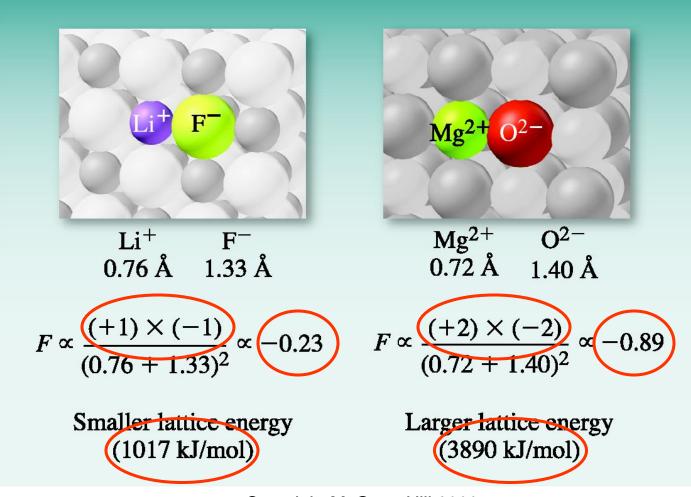
Microscopic View of NaCl Formation


• *Lattice energy* = the energy required to completely separate one mole of a solid ionic compound into gaseous ions

 $NaCl(s) \rightarrow Na^+(g) + Cl^-(g) \qquad \Delta H_{lattice} = +788 \text{ kJ/mol}$

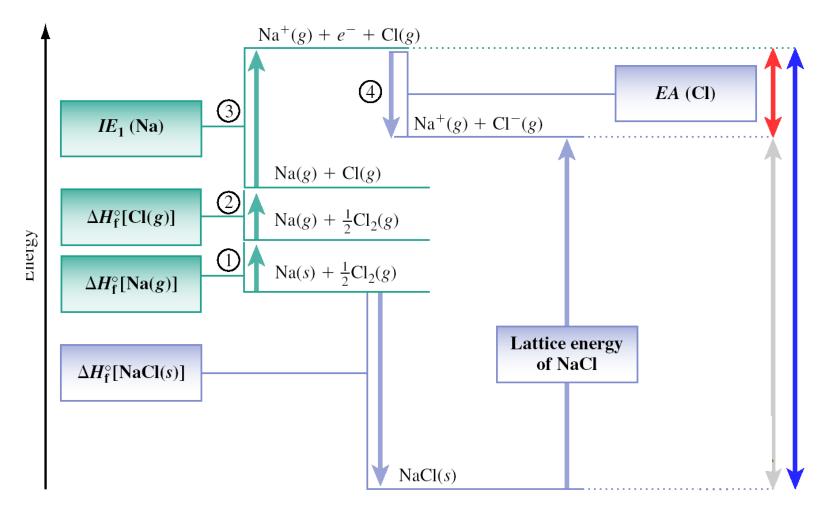
Because they are defined as an *amount* of energy, lattice energies are always positive.

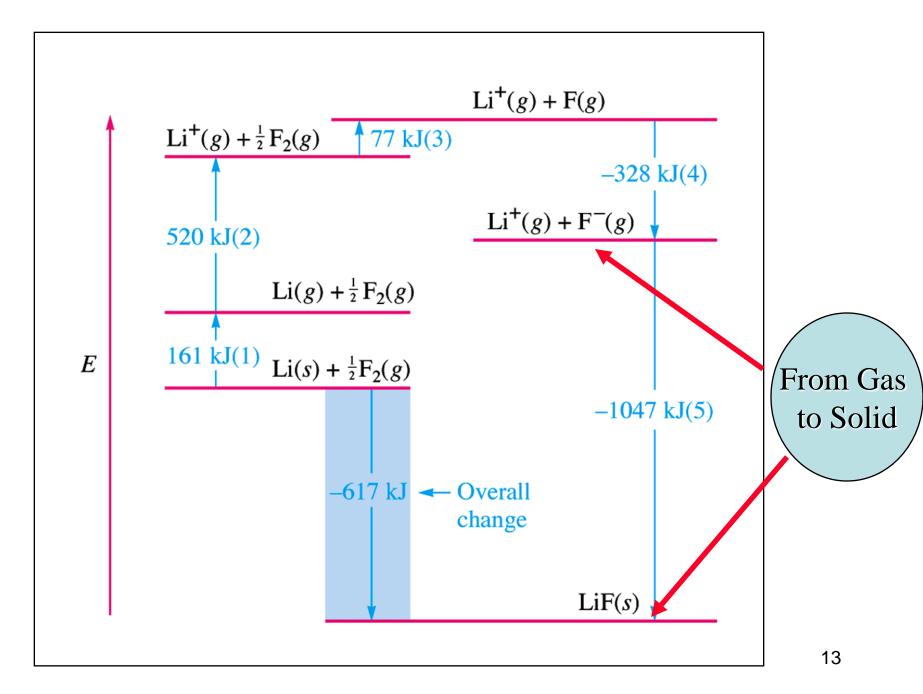

Coulombic attraction:


• Lattice energy (like a coulombic force) depends on

- Magnitude of charges
- Distance between the charges

Lattice energies of alkali metal iodides

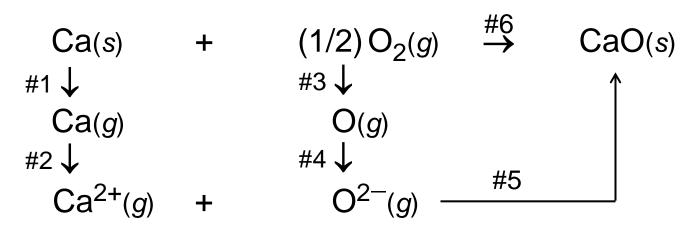



The ionic radii sums for LiF and MgO are 2.01 and 2.06 Å, respectively, yet their lattice energies are 1030 and 3795 kJ/mol. Why is the lattice energy of MgO nearly four times that of LiF?

Copyright McGraw-Hill 2009

• *Born-Haber cycle*: A method to determine lattice energies

Lattice Energy


e.g., formation of LiF(*s*):

Heat of formation: Li (s) + $\frac{1}{2}F_2(g) \rightarrow$ LiF (s)

This equation is the result of the following:

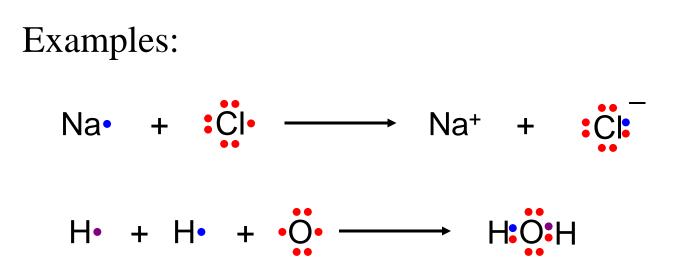
1- ΔH_{sub}	= 161	Sublimation:	Li(s)		Li(g)
$2-\Delta H_{IE}$	= 520	Ionization:	Li(g)	\rightarrow	$\operatorname{Li}^{+}(g) + e^{}$
3- ΔH_{Dis}	= 77	Dissociation:	$\frac{1}{2} F_2(g)$	\rightarrow	$\mathbf{F}(g)$
		Anion formation		\rightarrow	•
5- ΔH_{LE}	= -1047	Solid formation	$Li^{+}(g) + \frac{1}{2}F(g)$	\rightarrow	LiF(s)
ΔH_{Total}	= - 617	kJ/mol	Li (s) + $\frac{1}{2}$ F ₂ (g)	\rightarrow	LiF (s)

Born-Haber cycle for CaO

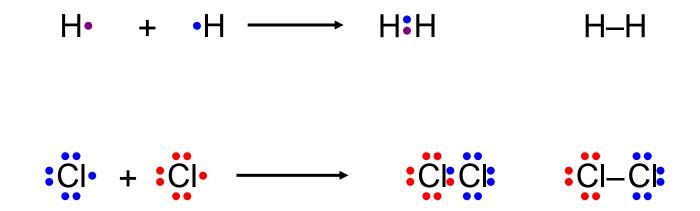
#1 Heat of sublimation = $\Delta H_{f^{\circ}}[Ca(g)] = +178 \text{ kJ/mol}$

- #2 1st & 2nd ionization energies = $I_1(Ca) + I_2(Ca) = +1734.5 \text{ kJ/mol}$
- #3 (1/2) Bond enthalpy = (1/2) $D(O=O) = \Delta H_f^{\circ}[O(g)] = +247.5 \text{ kJ/mol}$
- #4 1st & 2nd electron affinities = $EA_1(O) + EA_2(O) = +603 \text{ kJ/mol}$
- #5 (Lattice Energy) = $-\Delta H_{\text{lattice}}[\text{CaO}(s)]$ = (the unknown)
- #6 Standard enthalpy of formation = $\Delta H_f^{\circ}[CaO(s)] = -635 \text{ kJ/mol}$

 $+178 + 1734.5 + 247.5 + 603 - \Delta H_{\text{latt}} = -635$

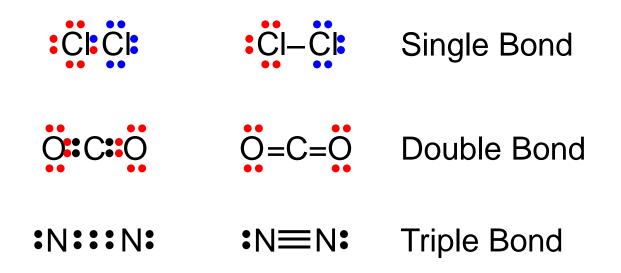

8.3 Covalent Bonding

• Atoms share electrons to form covalent bonds.


$H \bullet + \bullet H \longrightarrow H \bullet H \bullet H \to H \bullet H \bullet H$

- In forming the bond the atoms achieve a more stable electron configuration.
- Often found between two nonmetals

- Octet: Eight is a "magic" number of electrons.
 - Octet Rule: Atoms will gain, lose, or share electrons to <u>acquire eight valence electrons</u>


Lewis Structures

Shared electrons \Rightarrow Bonds

Non-bonding valence electrons \Rightarrow Lone pairs

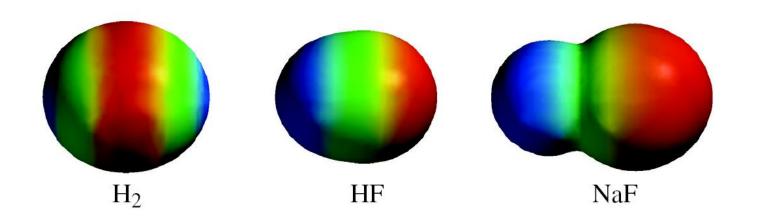
- Multiple Bonds
 - The number of shared electron pairs is the number of bonds.

• Bond strength and bond length

bond streng	gth single	< double < tr	iple
bond length	n single	> double > tr	iple
	N–N	N=N	N≡N
Bond Strength	163 kJ/mol	418 kJ/mol	941 kJ/mol
Bond Length	1.47 Å	1.24 Å	1.10 Å

Covalent Bond

- Often found between two nonmetals
- *Covalent bond*: electrons are shared equally between two identical atoms.
- **<u>Ionic Bond</u>**: electrons transfer completely to form oppositely charged ions
- In between are *polar covalent bonds*.
- The electrons are *not shared equally*
- One end is <u>slightly positive</u>, the other is slightly <u>negative</u>.

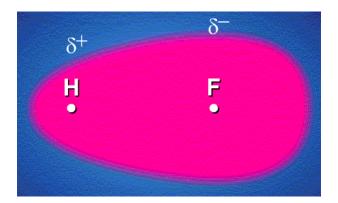

8.4 Electronegativity and Polarity

- *Nonpolar covalent bond* = electrons are shared *equally* by two bonded atoms
- *Polar covalent bond* = electrons are shared *unequally* by two bonded atoms

M:X	$M^{\delta +} X^{\delta -}$	M^+X^-
Pure covalent bond	Polar covalent bond	Ionic bond
Neutral atoms held together by <i>equally</i> shared electrons	Partially charged atoms held together by <i>unequally</i> shared electrons	Oppositely charged ions held together by electrostatic attraction

Copyright McGraw-Hill 2009

• Electron density distributions


red \Rightarrow high electron densitygreen \Rightarrow intermediate electron densityblue \Rightarrow low electron density

 $+ \rightarrow H - F$

δ+ δ-H – F

alternate representations

Polar covalent bond

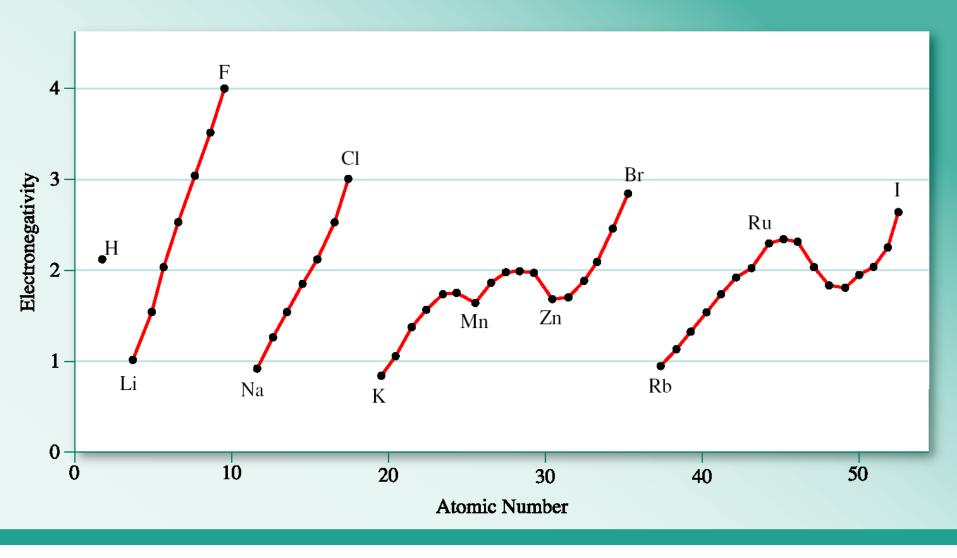
The density of electron cloud is *shifted* towards one of the two bonded atoms

- Dipole Moment
- Polarity

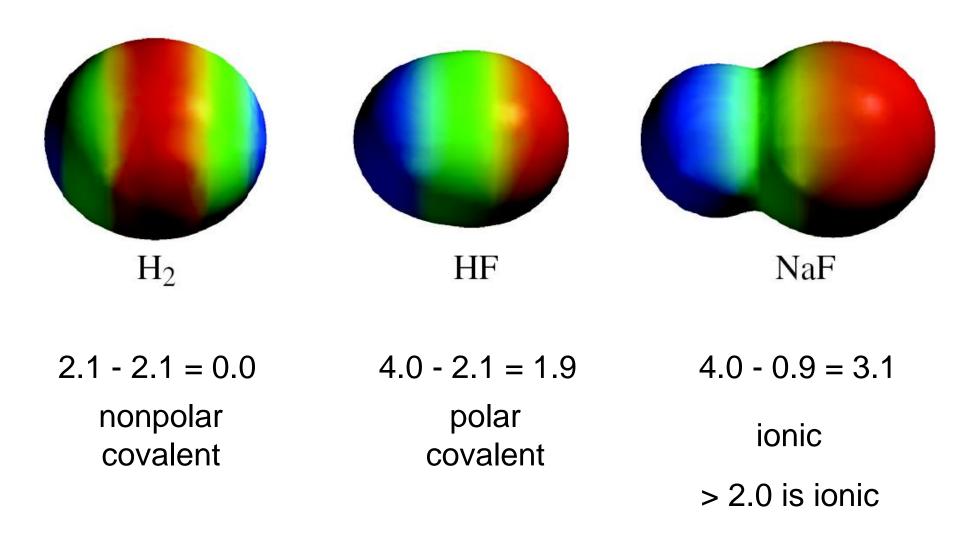
• <u>Electronegativity:</u> ability of an atom to draw shared electrons to itself.

- More electronegative elements attract electrons more strongly.
 - relative scale
 - related to *IE* and *EA*
 - unitless
 - smallest electronegativity: Cs 0.7
 - largest electronegativity: F 4.0

Electronegativity: The Pauling Scale


Increasing electronegativity

1A																	8A
1	2.1											2.4		<i>.</i> .		7.	18
H 2.1	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	
Li 1.0	Be 1.5											B 2.0	С 2.5	N 3.0	O 3.5	F 4.0	
Na 0.9	Mg 1.2	3B 3	4B 4	5B 5	6B 6	7B 7	8	8B 9	10	1 B 11	2B 12	Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0	
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr 3.0
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	Xe 2.6
Cs 0.7	Ba 0.9	Lu 1.3	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.2	
Fr 0.7	Ra 0.9																


Increasing electronegativity

26

Variation in Electronegativity with Atomic Number

Polar and nonpolar bonds

Bond Polarity and Dipole Moment



Bond Length (Å)	Electronegativity Difference	Dipole Moment (D)
0.92	1.9	1.82
1.27	0.9	1.08
1.41	0.7	0.82
1.61	0.4	0.44
	Length (Å) 0.92 1.27 1.41	Length (Å) Difference 0.92 1.9 1.27 0.9 1.41 0.7

The greater the difference in electronegativity, the *more polar is the bond*.

Dipole moments and partial charges

- Polar bonds often (not always) result in polar molecules.
- A polar molecule possesses a dipole.
 - **dipole moment** (μ) = the quantitative measure of a dipole

SI unit: coulomb•meter (C•m) common unit: debye (D)

$$1 D = 3.34 \times 10^{-30} C \cdot m$$

1.82 D

1.08 D

0.82 D

0.44 D

HF

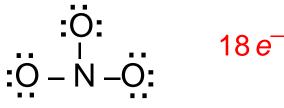
HCI

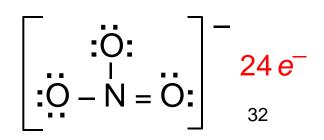
HBr

HI

8.5 Drawing Lewis Structures

- 1) Draw skeletal structure with the central atom being the least electronegative element.
- 2) Sum the valence electrons. Add 1 electron for each negative charge and subtract 1 electron for each positive charge.
- 3) Subtract 2 electrons for each bond in the skeletal structure.
- 4) Complete electron octets for atoms bonded to the central atom except for hydrogen.
- 5) Place extra electrons on the central atom.
- 6) Add multiple bonds if atoms lack an octet.

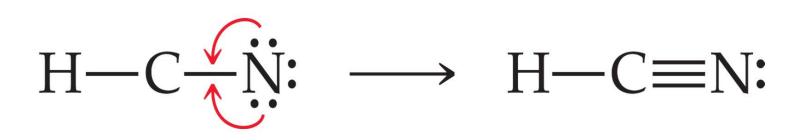

What is the Lewis structure of NO_3^- ?


 Draw skeletal structure with central atom being the least electronegative.

2) Sum valence electrons. Add 1 for each negative charge and subtract 1 for each positive charge.

 $NO_3^- \Rightarrow (1 \times 5) + (3 \times 6) + 1 = 24$ valence $e^- 24 e^-$

- 3) Subtract 2 for each bond in the skeletal structure.
- 4) Complete electron octets for atoms bonded to the central atom except for hydrogen.
- 5) Place extra electrons on the central atom.
- 6) Add multiple bonds if atoms lack an octet.



Example

Write Lewis Structure for HCN

8.6 Lewis Structures and Formal Charge

• The electron surplus or deficit, relative to the free atom, that is assigned to an atom in a Lewis structure.

Example:
$$H_2O = H_2O + H_2O$$

-1/2 bonding $e^- = -1$

formal charge = 0

H: orig. valence $e^- = 1$ O: orig. valence $e^- = 6$ - non-bonding $e^- = -0$ - non-bonding $e^- = -4$

$$-1/2$$
 bonding $e^- = -2$

formal charge = 0

Formal charges are not "real" charges.

Example: Formal charges on the atoms in ozone

0::0:0:

$$O = 6 - 4 - \frac{1}{2}(4)$$

= 0
$$O = 6 - 2 - \frac{1}{2}(6)$$

= +1
$$O = 6 - 6 - \frac{1}{2}(2)$$

= -1

Copyright McGraw-Hill 2009

- Formal charge guidelines
 - A Lewis structure with *no* formal charges is generally better than one with formal charges.
 - Small formal charges are generally better than large formal charges.
 - Negative formal charges should be on the more electronegative atom(s).

Identify the best structure for the isocyanate ion below:

(a)
$$\begin{bmatrix} \vdots \ddot{C} = N = \ddot{O} \vdots \end{bmatrix}^{-2}_{+1} = \begin{bmatrix} \vdots & \vdots & \vdots \\ 0 & \vdots & 0 \end{bmatrix}^{-2}_{+1}$$

(b)
$$\left[:C \equiv N - \overset{\cdot}{O}_{-1}:\right]^{-1}$$

Identify the best structure for the isocyanate ion below:

(a)
$$\begin{bmatrix} \vdots \ddot{C} = N = \ddot{O} \vdots \\ -2 & +1 & 0 \end{bmatrix}^{-2}$$

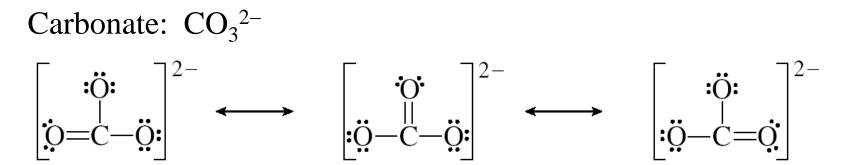
(b)
$$\begin{bmatrix} :C \equiv N - \ddot{O} \vdots \\ -1 & +1 & -1 \end{bmatrix}^{-1}$$

(c)
$$\begin{bmatrix} :\ddot{C} - N \equiv O \vdots \\ -3 & +1 & +1 \end{bmatrix}^{-1}$$

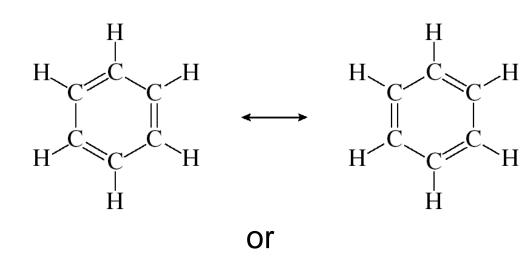
8.7 Resonance

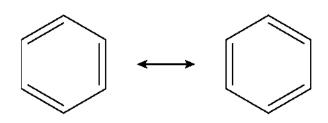
• <u>*Resonance*</u> structures are used when two or more equally valid Lewis structures can be written.

Example: NO_2 $\begin{bmatrix} \vdots \ddot{O} - \ddot{N} = \ddot{O} \end{bmatrix}^-$ These two bonds are known to be identical.


Solution:
$$[\dot{O} - N = \dot{O}] \leftrightarrow [\dot{O} = N - \dot{O}]$$

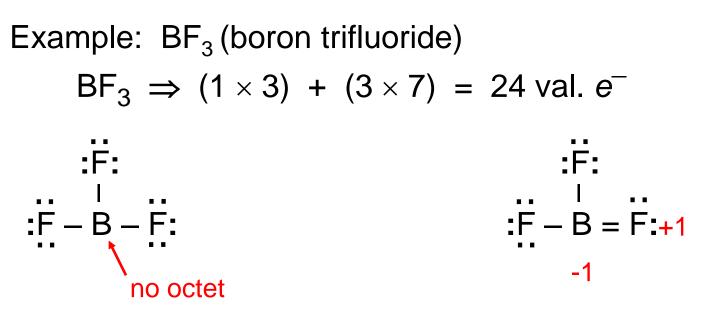
Two *resonance structures*, their average or the *resonance hybrid*, best describes the nitrite ion.

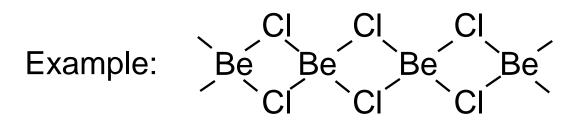

The double-headed arrow indicates resonance.


The electron pairs are **not localized**, but they are **delocalized**

Additional Examples

Benzene: C₆H₆




8.8 Exceptions to the Octet Rule

- Exceptions to the octet rule fall into three categories:
 Molecules with an incomplete octet
 - Molecules with an odd number of electrons
 - Molecules with an expanded octet

Incomplete Octets

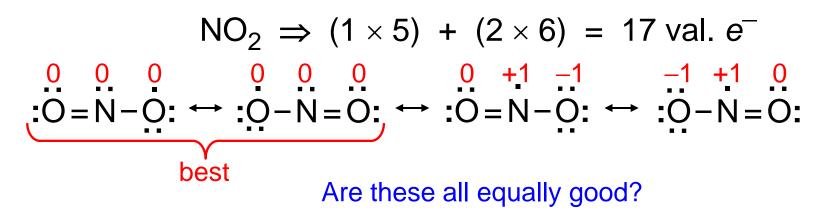
- Common with Be, B and AI compounds, but they often dimerize or polymerize.

Incomplete Octet

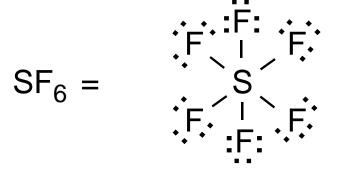
Н—Ве—Н

 $\frac{\text{Be} - 2\text{e}^{-}}{2\text{H} - 2\text{x}1\text{e}^{-}}$ 4e^{-}

• Odd Numbers of Electrons


Example: NO (nitrogen monoxide or nitric oxide)

$$NO \Rightarrow (1 \times 5) + (1 \times 6) = 11 \text{ valence } e^-$$

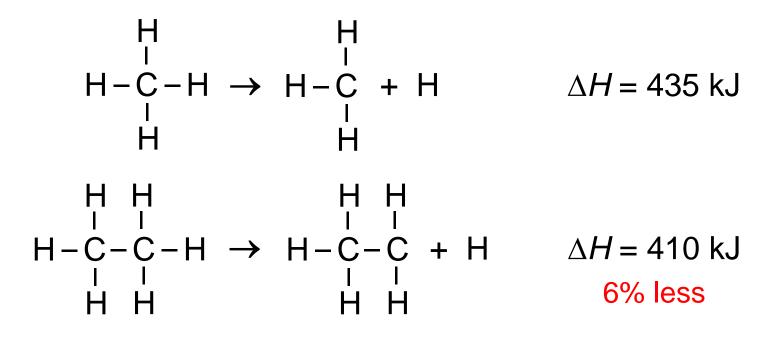

$$0 \quad 0 \quad -1 \quad +1$$

$$:N = O: \quad \longrightarrow : N = O:$$
better
$$Are \text{ these both}$$
equally good?

Example: NO₂ (nitrogen dioxide)

- Expanded Octet
 - Elements of the 3rd period and beyond have
 d-orbitals that allow more than 8 valence electrons.

48 valence *e*⁻ (S has 12 valence electrons)

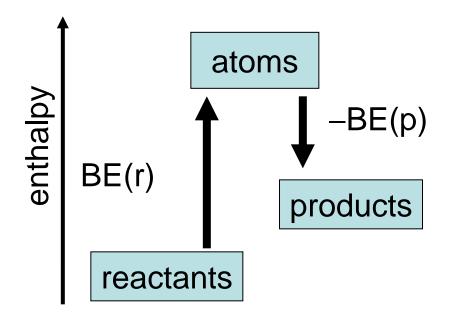

$$XeF_2 = :F - Xe - F:$$

22 valence e⁻ (Xe has 10 valence electrons)

8.9 Bond Enthalpy

- Bond enthalpy is the energy associated with breaking a particular bond in one mole of gaseous molecules.
 - Bond enthalpy is one measure of molecular stability.
 - Symbol: ΔH°
 - For diatomic molecules these are accurately measured quantities.

 Bond enthalpies for polyatomic molecules depend upon the bond's environment.

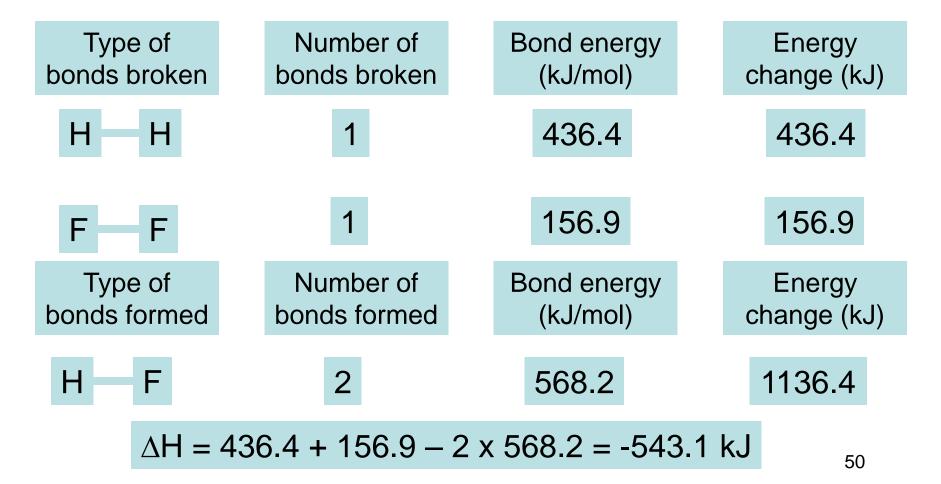

- Average bond enthalpies are used for polyatomic molecules.

Provide only estimates

Covalent bond energies and chemical reactions

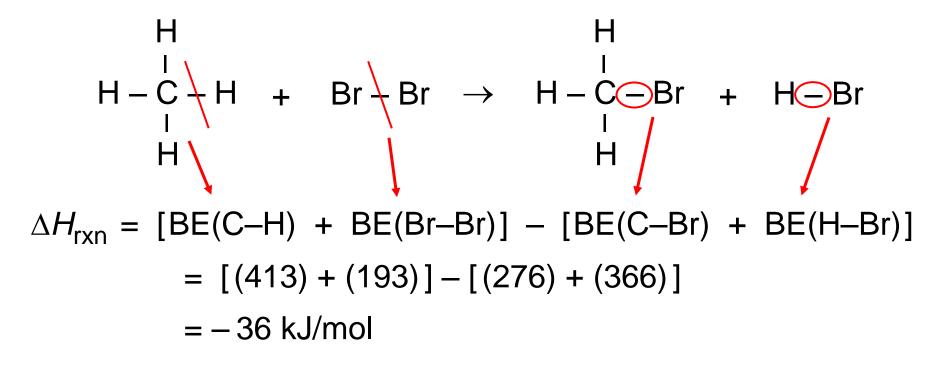
- Consider stepwise decomposition of CH₄
- Each C-H bond has a different energy.
- $CH_4 \rightarrow CH_3 + H$ $\Delta H = 435 \text{ kJ/mol}$
- $CH_3 \rightarrow CH_2 + H$ $\Delta H = 453 \text{ kJ/mol}$
- $CH_2 \rightarrow CH + H$ $\Delta H = 425 \text{ kJ/mol}$
- $CH \rightarrow C + H$ $\Delta H = 339 \text{ kJ/mol}$
- Each bond is sensitive to its environment but in an unsymmetrical way
- Average C-H bond energy = 1652/4=413kJ/mol

• Prediction of bond enthalpy



$\Delta H^{o} = \Sigma BE(reactants) - \Sigma BE(products)$

Use bond energies to calculate the enthalpy change for:


$$H_{2(g)} + F_{2(g)} \longrightarrow 2HF_{(g)}$$

 $\Delta H = \Sigma BE(reactants) - \Sigma BE(products)$

Example: Calculate the enthalpy of reaction for $CH_4(g) + Br_2(g) \rightarrow CH_3Br(g) + HBr(g)$

Solution: Consider ONLY bonds broken or formed.

TABLE 8.6	Bond Enthalpies		
Bond	Bond Enthalpy (kJ/mol)	Bond	Bond Enthalpy (kJ/mol)
H-H*	436.4	C-S	255
H-N	393	C=S	477
Н-О	460	N-N	193
H-S	368	N=N	418
H-P	326	N≡N	941.4
H-F	568.2	N-O	176
H–Cl	431.9	N=O	607
H–Br	366.1	0-0	142
H—I	298.3	0=0	498.7
С-Н	414	O-P	502
С-С	347	O=S	469
C=C	620	Р-Р	197
C≡C	812	P=P	489
C-N	276	S-S	268
C=N	615	S=S	352
C≡N	891	F-F	156.9
С-О	351	Cl-Cl	242.7
$C=O^{\dagger}$	745	Cl-F	193
C≡O	1070	Br-Br	192.5
С-Р	263	I—I	151.0

*Bond enthalpies shown in red are for diatomic molecules.

[†]The C=O bond enthalpy in CO₂ is 799 kJ/mol.

Key Points

- Lewis dot symbols
- Ionic bonding
- Lattice energy
- Born-Haber cycle
- Covalent bonding
- Octet rule
- Lewis structures
- Bond order
- Bond polarity

Key Points

- Electronegativity
- Dipole moment
- Drawing lewis structures
- Formal charge
- Resonance structures
- Incomplete octets
- Odd numbers of electrons
- Expanded octets
- Bond enthalpy