Chapter 7 Electron Configuration and the Periodic Table

7.1 Development of the Periodic Table

- 1864 John Newlands Law of Octaves- every 8th element had similar properties when arranged by atomic masses (not true past Ca)
- 1869 Dmitri Mendeleev & Lothar Meyer independently proposed idea of periodicity (recurrence of properties)

- Mendeleev
 - Grouped elements (66) according to properties
 - Predicted properties for elements not yet discovered
 - Though a good model, Mendeleev could not explain inconsistencies, for instance, all elements were not in order according to atomic mass

Mendeleev Early Periodic Table

TABELLE II														
NormalGRUPPE 1.GRUPPE 11.GRUPPE 11.GRUPPE 1V.GRUPPE V.GRUPPE V.GRUPPE VI.GRUPPE VII.GRUPPE VIIRH4RH3RH2RH-R20R0R203R02R205R03R207R04														
-	H=1													
2 Li=7 Be=9,4 B=11 C=12 N=14 O=16 F=19														
3	3 Ng = 23 Mg = 24 AI = 27,3 Si = 28 P = 31 S = 32 CI = 35,5													
4	K = 39	Ca = 40	-= 44	Ti = 48	V = 51	Cr = 52	Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63.						
5	(Cu = 63)	Zn = 65	-= 68	-= 72	AS = 75	Se = 78	Br = 80							
6	RЬ = 85	Sr = 87	?Yt = 88	Zr = 90	Nb = 94	Mo = 96	-= 100	Ru = 104, Rh = 104, Pd = 106, Ag = 108.						
7	(Ag = 108)	Cd = 112	In=113	Sn=118	Sb=122	Te=125	J=127	a secto assessantes en altrado						
8	CS = 133	Ba = 137	? Di = 138	?Ce = 140	-	-	-							
9	(-)	_	_	-	-	-	-							
10	-	-	?Er = 178	? La = 180	Ta = 182	W = 184	-	OS = 195, IY = 197, Pt = 198, Au = 199						
11	(Au=199)	Hg = 200	TI = 204	Pb = 207	Bi = 208	-	-							
12	-	-	-	Th = 231	-	U=240	-							

- 1913 Henry Moseley explained the discrepancy
 - Discovered correlation between number of protons (atomic number) and frequency of X rays generated
 - Today, elements are arranged in order of increasing atomic number

Periodic Table by Dates of Discovery

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

	1.4	The Modern Periodic Table																	
	1A 1	_							· · ·	0110								8A 18	
1	1 H 1s ¹	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	2 He 1s ²	1
2	$ \begin{array}{c} 3 \\ \mathbf{Li} \\ 2s^1 \end{array} $	4 Be $2s^2$											$5 \\ \mathbf{B} \\ 2s^2 2p^1$	$\begin{array}{c} 6 \\ \mathbf{C} \\ 2s^2 2p^2 \end{array}$	7 N $2s^22p^3$	8 O $2s^22p^4$	9 F $2s^22p^5$	10 Ne $2s^22p^6$	2
3	11 Na 3s ¹	12 Mg 3s ²	3B 3	4B 4	5B 5	6B 6	7 B 7	8	— 8B — 9	10	1B 11	2B 12	13 Al 3s ² 3p ¹	14 Si 3s ² 3p ²	15 P 3s ² 3p ³	16 S $3s^23p^4$	17 Cl 3s ² 3p ⁵	18 Ar 3s ² 3p ⁶	3
4	19 K 4s ¹	20 Ca $4s^2$	21 Sc $4s^23d^1$	22 Ti $4s^23d^2$	23 V $4s^23d^3$	24 Cr 4s ¹ 3d ⁵	25 Mn $4s^23d^5$	26 Fe 4s ² 3d ⁶	27 Co 4s ² 3d ⁷	28 Ni 4s ² 3d ⁸	29 Cu 4s ¹ 3d ¹⁰	30 Zn $3d^{10}4s^2$	31 Ga $4s^24p^1$	32 Ge 4s ² 4p ²	33 As $4s^24p^3$	34 Se 4s ² 4p ⁴	35 Br $4s^24p^5$	36 Kr 4s ² 4p ⁶	4
5	37 Rb 5s ¹	38 Sr 5s ²	39 Y 5s ² 4d ¹	40 Zr $5s^{2}4d^{2}$	41 Nb $5s^{1}4d^{4}$	42 Mo 5s ¹ 4d ⁵	43 Tc $5s^{2}4d^{5}$	44 Ru $5s^{1}4d^{7}$	45 Rh $5s^{1}4d^{8}$	46 Pd 4 <i>d</i> ¹⁰	47 Ag $5s^{1}4d^{10}$	48 Cd $5s^24d^{10}$	49 In 5s ² 5p ¹	50 Sn $5s^25p^2$	51 Sb 5s ² 5p ³	52 Te $5s^25p^4$	53 I 5s ² 5p ⁵	54 Xe 5s ² 5p ⁶	5
6	55 Cs 6s ¹	56 Ba 6s ²	71 Lu 6s ² 5d ¹ 4f ¹⁴	72 Hf $6s^25d^2$	73 Ta $6s^{2}5d^{3}$	74 W $6s^{2}5d^{4}$	75 Re 6s ² 5d ⁵	76 Os $6s^25d^6$	77 Ir 6s ² 5d ⁷	78 Pt $6s^{1}5d^{9}$	79 Au 6s ¹ 5d ¹⁰	80 Hg $6s^15d^{10}$	81 Tl 6s ² 6p ¹	82 Pb 6s ² 6p ²	83 Bi 6s ² 6p ³	84 Po 6 <i>s</i> ² 6 <i>p</i> ⁴	85 At 6s ² 6p ⁵	86 Rn 6s ² 6p ⁶	6
7	87 Fr 7s ¹	88 Ra 7s ²	103 Lr 7s ² 5f ¹⁴ 6d ¹	104 Rf 7s ² 6d ²	105 Db 7s ² 6d ³	106 Sg 7s ² 6d ⁴	107 Bh 7s ² 6d ⁵	108 Hs 7 <i>s</i> ² 6 <i>d</i> ⁶	109 Mt 7s ² 6d ⁷	110 Ds 7s ² 6d ⁸	111 Rg 7s ² 6d ⁹	$\frac{112}{7s^26d^{10}}$	$\frac{113}{-}$ $7s^27p^1$	$\frac{114}{-}$ $7s^27p^2$	$\frac{115}{-}$ $7s^27p^3$	$\frac{116}{-}$ $7s^27p^4$	(117)	118 — 7s ² 7p ⁶	7

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
$6s^25d^1$	$6s^24f^15d^1$	$6s^2 4f^3$	$6s^24f^4$	$6s^2 4f^5$	$6s^24f^6$	$6s^24f^7$	$6s^24f^75d^1$	$6s^24f^9$	$6s^24f^{10}$	$6s^24f^{11}$	$6s^24f^{12}$	$6s^24f^{13}$	$6s^24f^{14}$
		-		•	-	-		-	-				-
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
$7s^26d^1$	$7s^26d^2$	$7s^25f^26d^1$	$7s^25f^36d^1$	$7s^{2}5f^{4}6d^{1}$	$7s^25f^6$	$7s^2 5f^7$	$7s^25f^76d^1$	$7s^2 5f^9$	$7s^25f^{10}$	$7s^25f^{11}$	$7s^25f^{12}$	$7s^25f^{13}$	$7s^25f^{14}$
		···· J ····	· J -···				·	3	,	·· ,		,	

7.2 The Modern Periodic Table

- Classification of Elements
 - Main group elements "representative elements" Group 1A-7A
 - Noble gases Group 8A all have ns²np⁶ configuration(exception-He)
 - Transition elements 1B, 3B 8B "d-block"
 - Lanthanides/actinides "f-block"

Periodic Table Colored Coded By Main Classifications

	1A																	8A	
_	1																	18	
1	н	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	He	1
2	Li	Be	210	4 D	5 D		70		٥D		1 D	20	В	С	N	0	F	Ne	2
3	Na	Mg	зв 3	4B 4	5В 5	6В 6	7В 7	8	- 8B 9	10	тв 11	2 B 12	A 1	Si	Р	S	C1	Ar	3
4	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	4
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe	5
6	Cs	Ba	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn	6
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg								7

6	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	6
7	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	7

TABLE 7.1	Electro	on Configurations of Group	ns of Group 1A and Group 2A Elen				
	Group	1A	Group	2A			
	Li	$[He]2s^1$	Be	[He] $2s^2$			
	Na	$[Ne]3s^1$	Mg	$[Ne]3s^2$			
	Κ	$[Ar]4s^1$	Ca	$[Ar]4s^2$			
	Rb	$[Kr]5s^1$	Sr	$[Kr]5s^2$			
	Cs	$[Xe]6s^1$	Ba	$[Xe]6s^2$			
	Fr	$[Rn]7s^1$	Ra	$[Rn]7s^2$			

- Predicting properties
 - Valence electrons are the outermost electrons and are involved in bonding
 - Similarity of valence electron configurations help predict chemical properties
 - Group 1A, 2A and 8A all have similar properties to other members of their respective group

- Groups 3A 7A show considerable variation among properties from metallic to nonmetallic
- Transition metals do not always exhibit regular patterns in their electron configurations but have some similarities as a whole such as colored compounds and multiple oxidation states.

- Representing Free Elements in Chemical Equations
 - Metals are always represented by their empirical formulas (same as symbol for element)
 - Nonmetals may be written as empirical formula (C) or as polyatomic molecules (H₂, N₂, O₂, F₂, Cl₂, Br₂, I₂, and P₄).
 - Sulfur usually S instead of S_8

 Noble Gases all exist as isolated atoms, so use symbols (Xe, He, etc.)

Metalloids are represented with empirical formulas (B, Si, Ge, etc.)

7.3 Effective Nuclear Charge

- Z (nuclear charge) = the number of protons in the nucleus of an atom
- Z_{eff} (*effective nuclear charge*) = the magnitude of positive charge "experienced" by an electron in the atom
- Z_{eff} increases from left to right across a period; changes very little down a column

 Shielding occurs when an electron in a many-electron atom is partially shielded from the positive charge of the nucleus by other electrons in the atom.

 However, core electrons (inner electrons) shield the most and are constant across a period.

- $Z_{\rm eff} = Z \sigma$
 - $-\sigma$ represents the shielding constant (greater than 0 but less than *Z*) *equals the number of inner*

electrons

- Example:

	Li	Ве	В	С	Ν
Ζ	3	4	5	6	7
Z _{eff}	1	2	3	4	5

7.4 Periodic Trends in Properties of Elements

- *Atomic radius*: distance between nucleus of an atom and its valence shell
- *Metallic radius*: half the distance between nuclei of two adjacent, identical metal atoms

• **Covalent radius**: half the distance between adjacent, identical nuclei in a molecule

Atomic Radii (pm) of the Elements

				Increas	ing atomi	c radius			
		1A	2A	3A	4A	5A	6A	7 A	8A
		Н Э7							Не 31
		Li 152	Be	B () 85	C () 77	N) 75	0 • 73	F • 72	Ne
		Na	Mg	Al	Si	P O	S O	CI	Ar
atomic radius		K	Ca	Ga	Ge	As	Se	Br	98 Kr
ıcreasing		227	197	135	123	120	117	114	112
ч		Rb	Sr		Sn	Sb	Te		Xe
		248	215	166	140	141	143	133	131
		Cs	Ba	Ti	Pb	Bi	Po	At	Rn
					\bigcirc	0		0	
		265	222	171	175	155	164	142	140
	_								

Explain

 What do you notice about the atomic radius across a period? Why? (hint: Z_{eff})

• What do you notice about the atomic radius down a column? Why? (hint: *n*)

What do you notice about the atomic radius across a period? Why? (hint: Z_{eff})

Atomic radius decreases from left to right across a period due to increasing Z_{eff} . (as Z_{eff} . Increases the attraction forces between the nucleus and V.S.E increases so the size decreases.

What do you notice about the atomic radius down a column? Why? (hint: n)

Atomic radius increases down a column of the periodic table because the distance of the electron from the nucleus increases as *n* increases.

Valence and Core Electrons

Valence electrons are those with the highest principal quantum number

Electrons in inner shells are called <u>core electrons</u>

Sulfur has 10 core electrons and 6 valence electrons

Copyright © 2004 Pearson Prentice Hall, Inc.

Noble Gases

- Noble gases have <u>filled</u> energy levels
- The noble gases have <u>8 valence electrons</u>.
 Except for <u>He</u>, which has only <u>2 electrons</u>.
- We know the noble gases are especially non-reactive.
 - He and Ne are practically inert.
- The reason the noble gases are so non-reactive is that the electron configuration of the noble gases is especially stable.

Everyone Wants to Be Like a Noble Gas!

- The alkali metals have one more electron than the previous noble gas.
- Forming a cation with a <u>1+ charge</u>
- The halogens all have one electron less than the next noble gas.
- Forming an anion with **<u>charge -1</u>** ullet

Alkali metals 1 1A	Halogens 17 7A
3 Li $2s^1$	9 \mathbf{F} $2s^22p^5$
11 Na 3s ¹	$ \begin{array}{r} 17 \\ Cl \\ 3s^2 3p^5 \end{array} $
$ \begin{array}{c} 19\\ \mathbf{K}\\ 4s^1 \end{array} $	35 Br $4s^24p^5$
37 Rb $5s^{1}$	53 I $5s^{2}5n^{5}$
55 Cs $6s^1$	85 At
87 Fr 7s ¹	65 ⁻⁶ p ⁻

Stable Electron Configuration

Atom	Atom's electron config	Ion	Ion's electron config
Na	$[Ne]3s^1$	Na ⁺	[Ne]
Mg	$[Ne]3s^2$	Mg^{2+}	[Ne]
Al	$[Ne]3s^23p^1$	Al^{3+}	[Ne]
0	[He]2s2p ⁴	O ²⁻	[Ne]
F	$[He]2s^22p^5$	F	[Ne]

 Ionization energy (*IE*): minimum energy needed to remove an electron from an atom in the gas phase

– Representation:

$$Na_{(g)} \rightarrow Na^+_{(g)} + e^-$$

– IE for this 1st ionization = 495.8 kJ/mol

- In general, ionization energy increases as Z_{eff} increases
 - Exceptions occur due to the stability of specific electron configurations

IE_1 (kJ/mol) Values for Main Group Elements

1A 1							8A 18
Н	2A	3A	4A	5A	6A	7A	He
1312	2	13	14	15	16	17	2372
Li	Be	B	С	N	O	F	Ne
520	899	800	1086	1402	1314	1681	2080
Na	Mg	Al	Si	P	S	Cl	Ar
496	738	577	786	1012	999	1256	1520
K	Ca	Ga	Ge	As	Se	Br	Kr
419	590	579	761	947	941	1143	1351
Rb	Sr	In	Sn	Sb	Te	I	Xe
403	549	558	708	834	869	1009	1170
Cs 376	Ba 503	Tl 589	Р b 715	Bi 703	Po 813	At (926)	Rn 1037

Periodic Trends in IE_1

• What do you notice about the 1st *IE* between 2A and 3A? Why? (hint: draw the electron configuration) Harder to remove Easier to remove

• What do you notice about the 1st *IE* between 5A and 6A? Why? (hint: draw the electron configuration) Harder to remove Easier to remove

- Multiple lonizations: it takes more energy to remove the 2nd, 3rd, 4th, etc. electron and much more energy to remove core electrons
- Why?
 - Core electrons are closer to nucleus - Core electrons experience greater Z_{eff}

Ionization Energy

• <u>for Mg</u>

- $Mg = 1s^{2} 2s^{2} 2p^{6} 3s^{2}$ - I₁ = 735 kJ/mole $Mg^{+} = 1s^{2} 2s^{2} 2p^{6} 3s^{1}$ - I₂ = 1445 kJ/mole $Mg^{+2} = 1s^{2} 2s^{2} 2p^{6} 3s^{0}$
- $I_3 = 7730 \text{ kJ/mole}$
- The <u>effective nuclear charge</u> increases as electrons are removed
- It takes much more energy to remove a core electron than a valence electron

TABLE 7.3		Ionization Energies (in kJ/mol) for Elements 3 through 11*									
	Ζ	IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	IE ₆	IE ₇	IE ₈	IE ₉	<i>IE</i> ₁₀
Li	3	520	7,298	11,815							
Be	4	899	1,757	14,848	21,007	21,007					
В	5	800	2,427	3,660	25,026	32,827					
С	6	1,086	2,353	4,621	6,223	37,831	47,277				
Ν	7	1,402	2,856	4,578	7,475	9,445	53,267	64,360			
0	8	1,314	3,388	5,301	7,469	10,990	13,327	71,330	84,078		
F	9	1,681	3,374	6,050	8,408	11,023	15,164	17,868	92,038	106,434	
Ne	10	2,080	3,952	6,122	9,371	12,177	15,238	19,999	23,069	115,380	131,432
Na	11	496	4,562	6,910	9,543	13,354	16,613	20,117	25,496	28,932	141,362

*Cells shaded with blue represent the removal of core electrons.

- Electron Affinity (EA): energy released when an atom in the gas phase accepts an electron
 - Representation:

$$\mathrm{Cl}_{(\mathrm{g})}$$
 + $e^{-} \rightarrow \mathrm{Cl}_{(\mathrm{g})}$

- *EA* for this equation 349.0 kJ/mol energy released (ΔH = negative)

EA (kJ/mol) Values for Main Group Elements										
1A 1	I							8A 18		
H +72.8	2A 2		3A 13	4A 14	5A 15	6A 16	7A 17	He (0.0)		
Li +59.6	Be ≤0		B +26.7	C +122	N -7	O +141	F +328	Ne (-29)		
Na +52.9	$Mg \leq 0$		Al +42.5	Si +134	P +72.0	S +200	Cl +349	Ar (-35)		
K +48.4	Ca +2.37		Ga +28.9	Ge +119	As +78.2	Se +195	Br +325	Kr (-39)		
Rb +46.9	Sr +5.03		In +28.9	Sn +107	Sb +103	Te +190	I +295	Xe (-41)		
Cs +45.5	Ba +13.95		Tl +19.3	Pb +35.1	Bi +91.3	Po +183	At +270	Rn (-41)		

Periodic Trends in EA

- Periodic Interruptions in EA
 - Explained in much the same way as *IE* except not the same elements!

- Metallic Character
 - Metals
 - Shiny, lustrous, malleable
 - Good conductors
 - Low *IE* (form cations)
 - Form ionic compounds with chlorine
 - Form basic, ionic compounds with oxygen
 - Metallic character increases top to bottom in group and decreases left to right across a period

Nonmetals

- Vary in color, not shiny
- Brittle
- Poor conductors
- Form acidic, molecular compounds with oxygen
- High EA (form anions)
- -Metalloids
 - Properties between the metals and nonmetals

7.5 Electron Configuration of Ions

- Follow Hund's rule and Pauli exclusion principle as for atoms
- Writing electron configurations helps explain charges memorized earlier

• Ions of main group elements

 Noble gases (8A) almost completely unreactive due to electron configuration

- ns^2np^6 (except He 1s²)
- Main group elements tend to gain or lose electrons to become
 isoelectronic (same valence electron configuration as nearest noble gas)

Na: $1s^22s^22p^63s^1 \rightarrow Na^+ 1s^22s^22p^6$

Na: [Ne] $3s^1 \rightarrow Na^+$ [Ne]

(Na⁺ 10 electrons - isoelectronic with Ne)

CI: $1s^22s^22p^63s^23p^5 \rightarrow CI^- 1s^22s^22p^63s^23p^6$ CI: [Ne] $3s^23p^5 \rightarrow CI^-$ [Ar]

(CI⁻¹⁸ electrons - isoelectronic with Ar)

- Ions of *d*-Block Elements
 - Recall that the 4s orbital fills before the 3d orbital in the first row of transition metals
 - -Electrons are always lost from the highest "*n*" value (then from *d*)

Fe: $[Ar]4s^23d^6 \rightarrow Fe^{2+}: [Ar]3d^6$

Fe: $[Ar]4s^23d^6 \rightarrow Fe^{3+}$: $[Ar]3d^5$

7.6 Ionic Radius

- When an atom gains or loses electrons, the radius changes
- Cations are always smaller than their parent atoms (often losing an energy level)
- Anions are always larger than their parent atoms (increased e⁻ repulsions)

Comparison of Atomic and Ionic Radii

- Isoelectronic Series
 - Two or more species having the same electron configuration but different nuclear charges
 - Size varies significantly

7.7 Periodic Trends in Chemical Properties of Main Group Elements

 IE and EA enable us to understand types of reactions that elements undergo and the types of compounds formed

- General Trends in Chemical Properties
 - Elements in same group have same valence electron configuration; similar properties
 - Same group comparison most valid if elements have same metallic or nonmetallic character
 - Group 1A and 2A; Group 7A and 8ACareful with Group 3A 6A

- -Hydrogen $(1s^1)$
 - Group by itself
 - Forms +1 (H⁺)
 - -Most important compound is water
 - Forms –1 (H⁻), the hydride ion, with metals –Hydrides react with water to produce hydrogen gas and a base

 $-CaH_2(s) + H_2O(I) \rightarrow Ca(OH)_2(aq) + H_2(g)$

- Properties of the active metals
 - Group 1A (*ns*¹)
 - Low *IE*

- Never found in nature in elemental state
- React with oxygen to form metal oxides
- Peroxides and superoxides with some

– Group 2A (ns²)

- Less reactive than 1A
- Some react with water to produce H₂
- Some react with acid to produce H₂

- Group 3A (ns²np¹)

- Metalloid (B) and metals (all others)
- Al forms Al₂O₃ with oxygen
- Al forms +3 ions in acid
- Other metals form +1 and +3

– Group 4A (ns²np²)

- Nonmetal (C) metalloids (Si, Ge) and other metals
- Form +2 and +4 oxidation states
- Sn, Pb react with acid to produce H₂

– Group 5A (*ns²np³*)

 Nonmetal (N₂, P) metalloid (As,Sb) and metal (Bi)

- Nitrogen, N₂ forms variety of oxides
- Phosphorus, P₄
- As, Sb, Bi (crystalline)
- HNO₃ and H₃PO₄ important industrially

- Group 6A (*ns²np⁴*)

- Nonmetals (O, S, Se)
- Metalloids (Te, Po)
- Oxygen, O₂
- Sulfur,S₈
- Selenium, Se₈
- Te, Po (crystalline)
- SO₂, SO₃, H₂S, H₂SO₄

- Group 7A (*ns²np⁵*)

- All diatomic
- Do not exist in elemental form in nature
- Form ionic "salts"
- Form molecular compounds with each other

Copyright McGraw-Hill 2009

- Group 8A (*ns²np⁶*)

- All monatomic
- Filled valence shells

- Considered "inert" until 1963 when Xe and Kr were used to form compounds
- No major commercial use

- Comparison of 1A and 1B
 - Have single valence electron
 - Properties differ
 - Group 1B much less reactive than 1A
 - High *IE* of 1B incomplete shielding of nucleus by inner "*d*" and outer "*s*" electrons of 1B strongly attracted to nucleus
 - 1B metals often found elemental in nature (coinage metals)

- Properties of oxides within a period
 - Metal oxides are usually basic Na₂O(s) + H₂O(l) \longrightarrow 2NaOH(aq)
 - Nonmetal oxides are usually acidic $SO_3(g) + H_2O(l) \longrightarrow 2H_2SO_4(aq)$
 - Amphoteric oxides are located at intermediate positions on the periodic table $Al_2O_3(s) + 6HCl(aq) \longrightarrow 2AlCl_3(aq) + 3H_2O(l)$

 $Al_2O_3(s) + 2NaOH(aq) + 3H_2O(l) \longrightarrow 2NaAl(OH)_4(aq)$

TABLE 7.4Some	7.4 Some Properties of Oxides of the Third-Period Elements									
	Na₂O	MgO	Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO₃	Cl ₂ O ₇			
Type of compound			Ionic —		N	Aolecular				
Structure		— Exte	ensive three-dimensiona	l — — —	- ← D	viscrete mole	ecular units –			
Melting point (°C)	1275	2800	2045	1610	580	16.8	-91.5			
Boiling point (°C)	?	3600	2980	2230	?	44.8	82			
Acid-base nature	Basic	Basic	Amphoteric			Acidic				

Key Points

- Development of the periodic table
- Modern table and its arrangement
- Main group elements
- Valence electrons
- Effective nuclear charge and relationship to periodic trends
- Atomic radius (ionic radii, covalent radii, metallic radii)

Key Points

- Ionization energy (*IE*) trends of 1st and multiple *IE*'s
- Electron affinity (EA) trends
- Properties of metals, metalloids and nonmetals
- Isoelectronic predict charges of ions and electron configurations of ions

Key Points

- Write and/or recognize an isoelectronic series
- Characteristics of main group elements
- Know the most reactive metal and nonmetal groups and why
- Variability among groups
- Acidic, basic and amphoteric substances