

Prince Sultan University STAT 271 Second Examination Second Semester 2010/2011, Term 102 Tuesday, 17th May 2011 Dr. Mohammed Al-Haj Ebrahem

Time Allowed: 90 minutes

Maximum points: 20 points

Name:(First)(Middle)(Last)	ID Number:	Serial Nu	umber:	Section:	
		(Middle)	(Last)		

Important Instructions:

- 1. You may use CASIO scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You do NOT get special consideration if you forget your calculator.
- 4. Don't use notes or any notebook.
- 5. There should be NO talking during the examination.
- 6. Your exam will be taken immediately without any warning if your mobile is seen or heard.
- 7. You must show all your work beside the problem. Be organized.
- 8. You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.
- 9. This examination has 5 problems, with several parts. Make sure that your paper has all these problems

Problem	Max points	Student's Points
1	3	
2	3	
3	6	
4	4	
5	4	
Total	20	

Q1 (3 points total) A composition teacher wishes to see whether a new program will reduce the number of grammatical errors his students make when writing a two-page essay. The results are given in the following table.

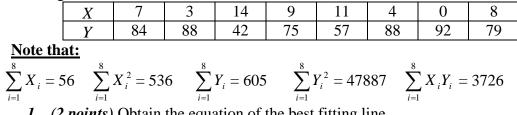
Student	1	2	3	4	5	6
Errors before	12	9	0	5	4	3
Errors after	9	6	1	3	2	3

 $(<u>Note</u> : S_D^2 = 2.7)$

1. (2 points) At $\alpha = 0.05$, can it be concluded that the number of errors has been reduced?

2. (1 point) Construct a 95% confidence interval for μ_D .

Q2 (3 points total) Independent random samples from two normal populations with variances σ_1^2 and σ_2^2 respectively produced the following summary of the data:


	Population 1	Population 2
Sample size	21	16
Sample Variance	100	40

1. (2 points) At $\alpha = 0.05$, test $H_0: \sigma_1^2 = \sigma_2^2$ vs. $H_1: \sigma_1^2 \neq \sigma_2^2$.

2. (1 point) Calculate the P-value.

Q3 (6 points total)

A random sample of 8 students is selected to study the relationship between the number of absences (X) and the final grade (Y) in a certain course. The data are given in the following table:

1. (2 points) Obtain the equation of the best fitting line.

2. (2 points) Construct a 90% prediction interval for final grade if the number of absence is 10.

3. (2 points) Test at $\alpha = 0.05$, $H_0: \rho = 0$ vs $H_1: \rho \neq 0$.

Q4 (*4 Points total*) Two groups of students are given a problem solving test, and the results are compared. The following table gives summary of the results:

	Mathematics majors	Statistics majors
Sample size	15	12
Sample mean	83.5	79.5
Sample standard deviation	4.3	3.8

1. (2 points) At $\alpha = 0.1$, test if the data provide sufficient evidence to indicate a difference between the mean for the two groups of students. Assume that the populations being sampled are independently normally distributed.

2. (2 *points*) Construct a 90% confidence interval for the differences in the two means.

Q5 (*4 points total*) In a sample of 80 Americans, 55% wished that they were rich. In a sample of 90 Europeans, 45% wished they were rich.

1. (2 points) At $\alpha = 0.01$, is there a difference in the proportions of Americans and Europeans.

2. (2 *points*) Construct a 99% confidence interval for the difference of the two proportions.