

Prince Sultan University

Department of Mathematical Sciences

MATH 223 – Second Examination 8th May 2007 Dr. Aiman Mukheimer

Student Name:	Student ID:
Time allowed: 90 minutes	Maximum points: 100 points

1. (8 points) Find the coordinate vector of $p = 2 - x + x^2$ relative to the basis $S = \{p_1, p_2, p_3\}$ where $p_1 = 1 + x$, $p_2 = 1 + x^2$, and $p_3 = x + x^2$

2. (8 points) Use the Wronskian to show that the vectors e^x , xe^x , and x^2e^x are linearly independent

3. (10 points) Check whether the following vectors $v_1 = (0,3,1,-1)$, $v_2 = (6,0,5,1)$, and $v_3 = (4,-7,1,3)$ form a linearly dependent set in R^4 . If so Express any vector as a linear combination of the other two.

4. (10 points) Determine whether the following vectors $v_1 = (2, -1, 3)$, $v_2 = (4, 1, 2)$, and $v_3 = (8, -1, 8)$ span the vector space R^3

5. (9 points) Show that the set of all positive real numbers with operations x + y = xy and $kx = x^k$ is a vector space

6. (8 points) Determine whether $T: R^3 \to R^2$ where T(x, y, z) = (3x - 4y, 2x - 5z) is a linear transformation or not.

7. (15 points) Show that the lines

$$x = 3 - 2t$$
, $y = 4 + t$, $z = 1 - t$ $(-\infty < t < \infty)$

and
$$x = 5 + 2t$$
, $y = 1 - t$, $z = 7 + t$ $(-\infty < t < \infty)$

are parallel, and find an equation for the plane they determine.

.

8. (5 points) For which values of k are u = (k, k, 1) and v = (k, 5, 6) are orthogonal.

9.	(10 points) Find the point of intersection of the line
	$x - 9 = -5t$, $y + 1 = -t$, $z - 3 = t$ ($-\infty < t < \infty$) and the plane $2x - 3y + 4z + 7 = 0$

- 10. (9 points) Find the standard matrices for linear operators on R^3 represented by:
 - a. A reflection about the yz-plane.

b. An orthogonal projection on the xz-plane.

c. The composition of a reflection about the yz-plane, followed by an orthogonal projection on the xz-plane.

11. (8 points) Show that the liear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the equations $w_1 = 2x_1 + x_2$ and $w_2 = 3x_1 + 4x_2$ is one-to-one, and find $T^{-1}(w_1, w_2)$