Prince Sultan University Deanship of Educational Services Department of General Sciences ### **COURSE DETAILS:** | GENERAL CHEMISTRY 101CHM101MAJOR EXAM II | | | | | | | | | | | | |--|-------------------------------------|--|--|--|--|--|--|--|--|--|--| | Semester: | Spring Term 182 | | | | | | | | | | | | Date: | Sunday /April 7 th /2019 | | | | | | | | | | | | Time Allowed: | 60 minutes | | | | | | | | | | | #### STUDENT DETAILS: | Student Name: | | |--------------------|--| | Student ID Number: | | | Section: | | ### **INSTRUCTIONS:** - You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators. - NO talking or looking around during the examination. - NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately. - Show all your work and be organized. - You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem. | H ¹ 1.000 | | | | | | | | | | | | | | | | | He ² | |---|---|--|---------------------------------|----------------------------------|--|---|---|--|---|--|---|---------------------------|----------------------------------|----------------------------------|---|---|---------------------------------| | Li^3 | \mathbf{Be}^4 | | | | | | | | | | | \mathbf{B}^5 | \mathbb{C}^6 | \mathbf{N}^7 | \mathbf{O}_8 | \mathbf{F}^9 | Ne^{10} | | | 9.012 | | | | | | | | | | | 10.81 | 12.01 | 14.01 | 16 | 19 | 20.18 | | Na^{11} | \mathbf{Mg}^{12} | 1 | | | | | | | | | | \mathbf{Al}^{13} | Si ¹⁴ | \mathbf{P}^{15} | \mathbf{S}^{16} | \mathbf{Cl}^{17} | \mathbf{Ar}^{18} | | | 24.31 | | | | | | | | | | | 26.98 | 28.09 | 30.97 | 32.06 | 35.45 | 39.95 | | \mathbf{K}^{19} | Ca^{20} | \mathbf{Sc}^{21} | Ti^{22} | V^{23} | Cr ²⁴ | \mathbf{Mn}^{25} | $\mathbf{F}_{\mathbf{c}}^{26}$ | \mathbf{Co}^{27} | Ni^{28} | Cu ²⁹ | $\mathbf{Z}\mathbf{n}^{30}$ | Ga^{31} | Ge^{32} | \mathbf{As}^{33} | Se^{34} | \mathbf{Br}^{35} | \mathbf{Kr}^{36} | | | ~~ | \sim | A 1 | • | CI | TATIL | 1.0 | CU | 141 | Cu | Z /11 | Ga | Ge | AS | 96 | DI | 171 | | 39.10 | 40.08 | | | 5 0.94 | | | l l | | 58.71 | 63.54 | 65.37 | 69.72 | 72.59 | 74.92 | 78.96 | 79.9 | 83.8 | | 39.10 | l l | 44.96 | | 50.94
Nb ⁴¹ | 51.99 | 54.94 | 55.85 | 58.93 | 58.71 | 63.54 | 65.37 | 69.72 | 72.59 | 74.92 | | 79.9 | | | 39.10 Rb ³⁷ 85.47 | 40.08
Sr ³⁸
87.62 | 44.96
Y ³⁹
88.91 | 47.9 | \mathbf{Nb}^{41} | 51.99
Mo⁴² | 54.94
Tc ⁴³ | 55.85
Ru ⁴⁴ | 58.93
Rh ⁴⁵ | 58.71
Pd ⁴⁶
106.4 | 63.54
Ag ⁴⁷
107.87 | 65.37
Cd ⁴⁸
112.4 | 69.72 | 72.59 | 74.92 | 78.96
Te ⁵²
127.6 | 79.9
I ⁵³
126.9 | 83.8 | | 39.10
Rb ³⁷
85.47 | 40.08
Sr ³⁸
87.62 | 44.96
Y ³⁹
88.91 | 47.9
Zr ⁴⁰ | Nb ⁴¹
92.91 | 51.99
Mo⁴²
95.94 | 54.94
Tc ⁴³
99.91 | 55.85
Ru ⁴⁴
101.1 | 58.93
Rh ⁴⁵
102.91 | 58.71
Pd ⁴⁶
106.4 | 63.54
Ag ⁴⁷
107.87 | 65.37
Cd ⁴⁸
112.4 | 69.72
In ⁴⁹ | 72.59
Sn ⁵⁰ | 74.92
Sb ⁵¹ | 78.96
Te ⁵²
127.6 | 79.9
I ⁵³ | 83.8
Xe ⁵⁴ | Student's Mark /15 | 1) | | points) Barium hydroxide, $Ba(OH)_2$ solution, and acetic acid, CH_3COOH solution, react to ld two products; Answer the following reaction regarding this reaction: | |----|------|--| | | • | Complete and balance the molecular equation that represents this reaction: | | | / | Ba(OH) ₂ (aq) +CH ₃ COOH (aq) \rightarrow (aq) +(l) | | | B) | Write the <i>net ionic</i> equation (Note: Acetic acid is <u>weak acid</u>): | | | | | | | C) | If 20 mL of 0.1 M Ba(OH) ₂ solution were required to titrate 0.3M sample of CH ₃ COOH solution. Calculate the volume of acetic acid (CH ₃ COOH) sample? | 2) | (1.3 | 5 points) You have 88.6 mL of a 2.50 M solution of Na ₂ CrO ₄ (aq). You also have 125 mL of a | | | | 0 M solution of AgNO ₃ (aq). After mixing the two solutions the following reaction takes place: | | | Na | $_2\text{CrO}_4(aq) + 2 \text{ AgNO}_3(aq) \rightarrow \text{Ag}_2\text{CrO}_4(s) + 2 \text{ NaNO}_3(aq)$ | | | A) | Calculate the mass of Ag ₂ CrO ₄ that will precipitate at the end of the reaction? | B) | Calculate the concentration of Na ⁺ ions at the end of the reaction? | 3) (2 points) consider the three flasks in the diagram below, , then | A) | Calculate the <i>total pressure</i> after all valves are opened? | |----|--| B) | Calculate the <i>partial pressure of Ar</i> gas in the mixture? | | | | - **4)** (1.5 point) A 32.5 g piece of aluminum (which has a molar specific heat capacity of 24.03 J/°C•mol) is heated to 82.4°C and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g°C) initially at 22.3°C. The final temperature of the water is 24.2°C. Ignoring significant figures, calculate the mass of water in the calorimeter. - A) 212 g - B) 5.72kg - C) 6.42 - D) 1.68kg - E) None of these - 5) (1.0 point) A gas absorbs 188 J of heat and then performs 310 J of work. The change in internal energy of the gas is - A) 498J - B) 122J - C) + 122J - D) -498J - E) none of these - 6) (*1 point*) At 1000° C and 10 torr, the density of a certain element in the gaseous state is 2.90×10^{-3} the element is: - A) Na - B) He - C) F - D) Zn - E) O - 7) (*1 point*) A sample of gas is in a 50.0-mL container at a pressure of 645 torr and a temperature of 25°C. The entire sample is heated to a temperature of 35°C and transferred to a new container whose volume is 98.7 mL. The pressure of the gas in the second container is about: - A) 457 torr - B) 316 torr - C) 1.32×10^{3} torr - D) 65 torr - E) 338 torr - 8) (1 point) Given the following two reactions at 298 K and 1 atm, which of the statements is true? - 1. $N_2(g) + O_2(g) \rightarrow 2NO(g)$ ΔH_1 - 2. $NO(g) + \frac{1}{2}O_2(g) \rightarrow NO_2(g)$ ΔH_2 - A) ΔH_1° for NO₂(g) = ΔH_2 - B) ΔH_f° for NO(g) = ΔH_1 - C) $\Delta H_{\rm f}^{\circ} = \Delta H_2$ - D) ΔH_f° for NO₂(g) = $\Delta H_2 + \frac{1}{2}\Delta H_1$ - E) none of these - 9) (1.5 point) Which of the following statements is true? - A) The exact location of an electron can be determined if we know its energy. - B) An electron in a 2s orbital can have the same n, l, and m_l quantum numbers as an electron in a 3s orbital. - C) 32 electrons is the maximum number of electrons that can be contained in all of the orbitals with n = 4 - D) In the buildup of atoms, electrons occupy the 4f orbitals before the 6s orbitals. - E) Only three quantum numbers are needed to uniquely describe an electron. - 10) (1 point) Gaseous ethane, C_2H_4 reacts with according to the following equation: $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2 + H_2O(g)$ What volume of oxygen gas at STP is needed to react with 5.75 g of ethene, C_2H_4 ? |
. . |
 | | | - |
 | |
 | | | | |
 | |
 |
 |
 | | | | | | |
 | |
 | |
 | |
 | | |
 | | | | |
 | | |
 |
 | |
 |
 | | | |----------------|------|-----|----|---|------|---|--------|---|-------|-------|-------|--------|---|-------|------|------|---|----|---|----|---|-------|--------|---|--------|---|------|---|------|----|-------|------|----|----|----|---|------|----|----|-------|--------|---|--------|------|----|--| |
 |
 | • • | ٠. | - |
 | • |
٠. | • |
• |
• |
• |
٠. | • |
• |
 |
 | | ٠. | | ٠. | |
- |
٠. | • |
٠. | • |
 | • |
 | ٠. |
• |
 | ٠. | ٠. | ٠. | • |
 | ٠. | ٠. |
• |
٠. | • |
٠. | ٠. | ٠. | | |
 |
 | | | |
 | |
 | | | | |
 | |
 |
 |
 | _ | | _ | | _ |
_ |
 | _ |
 | |
 | _ |
 | |
 |
 | | | | |
 | | |
 |
 | |
 |
 | | | ## 11) (1.5 points) Consider the reaction: $$\mathrm{C_2H_5OH}(l) + 3\mathrm{O_2}(g) \rightarrow 2\mathrm{CO_2}(g) + 3\mathrm{H_2O}(l), \Delta H = -1.37 \times 10^3 \,\mathrm{kJ}$$ When a 21.1-g sample of ethyl alcohol is burned, how much energy is released as heat? - A) 0.458 kJ - B) 0.627 kJ - C) 2.89 x 10⁴ kJ - D) $6.27 \times 10^2 \text{ kJ}$ - E) 2.18 kJ # **Scratch Paper**