# **Prince Sultan University**

Deanship of Educational Services Department of General Sciences



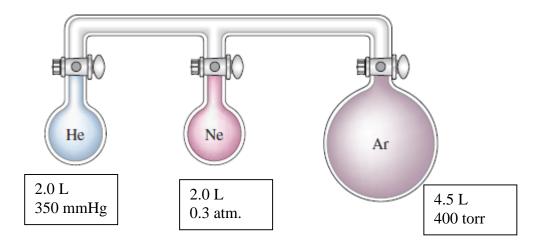
### **COURSE DETAILS:**

| GENERAL CHEMISTRY 101CHM101MAJOR EXAM II |                                     |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------|-------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Semester:                                | Spring Term 182                     |  |  |  |  |  |  |  |  |  |  |
| Date:                                    | Sunday /April 7 <sup>th</sup> /2019 |  |  |  |  |  |  |  |  |  |  |
| Time Allowed:                            | 60 minutes                          |  |  |  |  |  |  |  |  |  |  |

#### STUDENT DETAILS:

| Student Name:      |  |
|--------------------|--|
| Student ID Number: |  |
| Section:           |  |

### **INSTRUCTIONS:**


- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

| <b>H</b> <sup>1</sup> 1.000               |                                           |                                          |                                 |                                  |                                          |                                           |                                           |                                            |                                           |                                            |                                           |                           |                                  |                                  |                                           |                                         | <b>He</b> <sup>2</sup>          |
|-------------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------|----------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------|----------------------------------|----------------------------------|-------------------------------------------|-----------------------------------------|---------------------------------|
| $Li^3$                                    | $\mathbf{Be}^4$                           |                                          |                                 |                                  |                                          |                                           |                                           |                                            |                                           |                                            |                                           | $\mathbf{B}^5$            | $\mathbb{C}^6$                   | $\mathbf{N}^7$                   | $\mathbf{O}_8$                            | $\mathbf{F}^9$                          | $Ne^{10}$                       |
|                                           | 9.012                                     |                                          |                                 |                                  |                                          |                                           |                                           |                                            |                                           |                                            |                                           | 10.81                     | 12.01                            | 14.01                            | 16                                        | 19                                      | 20.18                           |
| $Na^{11}$                                 | $\mathbf{Mg}^{12}$                        | 1                                        |                                 |                                  |                                          |                                           |                                           |                                            |                                           |                                            |                                           | $\mathbf{Al}^{13}$        | Si <sup>14</sup>                 | $\mathbf{P}^{15}$                | $\mathbf{S}^{16}$                         | $\mathbf{Cl}^{17}$                      | $\mathbf{Ar}^{18}$              |
|                                           | 24.31                                     |                                          |                                 |                                  |                                          |                                           |                                           |                                            |                                           |                                            |                                           | 26.98                     | 28.09                            | 30.97                            | 32.06                                     | 35.45                                   | 39.95                           |
| $\mathbf{K}^{19}$                         | $Ca^{20}$                                 | $\mathbf{Sc}^{21}$                       | $Ti^{22}$                       | $V^{23}$                         | Cr <sup>24</sup>                         | $\mathbf{Mn}^{25}$                        | $\mathbf{F}_{\mathbf{c}}^{26}$            | $\mathbf{Co}^{27}$                         | $Ni^{28}$                                 | Cu <sup>29</sup>                           | $\mathbf{Z}\mathbf{n}^{30}$               | $Ga^{31}$                 | $Ge^{32}$                        | $\mathbf{As}^{33}$               | $Se^{34}$                                 | $\mathbf{Br}^{35}$                      | $\mathbf{Kr}^{36}$              |
|                                           | ~~                                        | $\sim$                                   | A 1                             | •                                | CI                                       | TATIL                                     | 1.0                                       | CU                                         | 141                                       | Cu                                         | <b>Z</b> /11                              | Ga                        | Ge                               | AS                               | 96                                        | DI                                      | 171                             |
| 39.10                                     | 40.08                                     |                                          |                                 | <b>5</b> 0.94                    |                                          |                                           | l l                                       |                                            | 58.71                                     | 63.54                                      | 65.37                                     | 69.72                     | 72.59                            | 74.92                            | 78.96                                     | 79.9                                    | 83.8                            |
| 39.10                                     | l l                                       | 44.96                                    |                                 | 50.94<br><b>Nb</b> <sup>41</sup> | 51.99                                    | 54.94                                     | 55.85                                     | 58.93                                      | 58.71                                     | 63.54                                      | 65.37                                     | 69.72                     | 72.59                            | 74.92                            |                                           | 79.9                                    |                                 |
| 39.10 <b>Rb</b> <sup>37</sup> 85.47       | 40.08<br><b>Sr</b> <sup>38</sup><br>87.62 | 44.96<br><b>Y</b> <sup>39</sup><br>88.91 | 47.9                            | $\mathbf{Nb}^{41}$               | 51.99<br><b>Mo<sup>42</sup></b>          | 54.94<br><b>Tc</b> <sup>43</sup>          | 55.85<br><b>Ru</b> <sup>44</sup>          | 58.93<br><b>Rh</b> <sup>45</sup>           | 58.71<br><b>Pd</b> <sup>46</sup><br>106.4 | 63.54<br><b>Ag</b> <sup>47</sup><br>107.87 | 65.37<br><b>Cd</b> <sup>48</sup><br>112.4 | 69.72                     | 72.59                            | 74.92                            | 78.96<br><b>Te</b> <sup>52</sup><br>127.6 | 79.9<br><b>I</b> <sup>53</sup><br>126.9 | 83.8                            |
| 39.10<br><b>Rb</b> <sup>37</sup><br>85.47 | 40.08<br><b>Sr</b> <sup>38</sup><br>87.62 | 44.96<br><b>Y</b> <sup>39</sup><br>88.91 | 47.9<br><b>Zr</b> <sup>40</sup> | <b>Nb</b> <sup>41</sup><br>92.91 | 51.99<br><b>Mo<sup>42</sup></b><br>95.94 | 54.94<br><b>Tc</b> <sup>43</sup><br>99.91 | 55.85<br><b>Ru</b> <sup>44</sup><br>101.1 | 58.93<br><b>Rh</b> <sup>45</sup><br>102.91 | 58.71<br><b>Pd</b> <sup>46</sup><br>106.4 | 63.54<br><b>Ag</b> <sup>47</sup><br>107.87 | 65.37<br><b>Cd</b> <sup>48</sup><br>112.4 | 69.72<br>In <sup>49</sup> | 72.59<br><b>Sn</b> <sup>50</sup> | 74.92<br><b>Sb</b> <sup>51</sup> | 78.96<br><b>Te</b> <sup>52</sup><br>127.6 | 79.9<br><b>I</b> <sup>53</sup>          | 83.8<br><b>Xe</b> <sup>54</sup> |

Student's Mark
/15

| 1) |      | <b>points</b> ) Barium hydroxide, $Ba(OH)_2$ solution, and acetic acid, $CH_3COOH$ solution, react to ld two products; Answer the following reaction regarding this reaction:            |
|----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | •    | Complete and balance the molecular equation that represents this reaction:                                                                                                               |
|    | /    | Ba(OH) <sub>2</sub> ( $aq$ ) +CH <sub>3</sub> COOH ( $aq$ ) $\rightarrow$ ( $aq$ ) +( $l$ )                                                                                              |
|    | B)   | Write the <i>net ionic</i> equation (Note: Acetic acid is <u>weak acid</u> ):                                                                                                            |
|    |      |                                                                                                                                                                                          |
|    | C)   | If 20 mL of 0.1 M Ba(OH) <sub>2</sub> solution were required to titrate 0.3M sample of CH <sub>3</sub> COOH solution. Calculate the volume of acetic acid (CH <sub>3</sub> COOH) sample? |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
| 2) | (1.3 | 5 points) You have 88.6 mL of a 2.50 M solution of Na <sub>2</sub> CrO <sub>4</sub> (aq). You also have 125 mL of a                                                                      |
|    |      | 0 M solution of AgNO <sub>3</sub> (aq). After mixing the two solutions the following reaction takes place:                                                                               |
|    | Na   | $_2\text{CrO}_4(aq) + 2 \text{ AgNO}_3(aq) \rightarrow \text{Ag}_2\text{CrO}_4(s) + 2 \text{ NaNO}_3(aq)$                                                                                |
|    | A)   | Calculate the mass of Ag <sub>2</sub> CrO <sub>4</sub> that will precipitate at the end of the reaction?                                                                                 |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    | B)   | Calculate the concentration of Na <sup>+</sup> ions at the end of the reaction?                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |
|    |      |                                                                                                                                                                                          |

3) (2 points) consider the three flasks in the diagram below, , then



| A) | Calculate the <i>total pressure</i> after all valves are opened? |
|----|------------------------------------------------------------------|
|    |                                                                  |
|    |                                                                  |
|    |                                                                  |
|    |                                                                  |
|    |                                                                  |
|    |                                                                  |
|    |                                                                  |
| B) | Calculate the <i>partial pressure of Ar</i> gas in the mixture?  |
|    |                                                                  |

- **4)** (1.5 point) A 32.5 g piece of aluminum (which has a molar specific heat capacity of 24.03 J/°C•mol) is heated to 82.4°C and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g°C) initially at 22.3°C. The final temperature of the water is 24.2°C. Ignoring significant figures, calculate the mass of water in the calorimeter.
  - A) 212 g
  - B) 5.72kg
  - C) 6.42
  - D) 1.68kg
  - E) None of these
- 5) (1.0 point) A gas absorbs 188 J of heat and then performs 310 J of work. The change in internal energy of the gas is
  - A) 498J
  - B) 122J
  - C) + 122J
  - D) -498J
  - E) none of these

- 6) (*1 point*) At  $1000^{\circ}$ C and 10 torr, the density of a certain element in the gaseous state is  $2.90 \times 10^{-3}$  the element is:
  - A) Na
  - B) He
  - C) F
  - D) Zn
  - E) O
- 7) (*1 point*) A sample of gas is in a 50.0-mL container at a pressure of 645 torr and a temperature of 25°C. The entire sample is heated to a temperature of 35°C and transferred to a new container whose volume is 98.7 mL. The pressure of the gas in the second container is about:
  - A) 457 torr
  - B) 316 torr
  - C)  $1.32 \times 10^{3}$  torr
  - D) 65 torr
  - E) 338 torr
- 8) (1 point) Given the following two reactions at 298 K and 1 atm, which of the statements is true?
  - 1.  $N_2(g) + O_2(g) \rightarrow 2NO(g)$   $\Delta H_1$
  - 2.  $NO(g) + \frac{1}{2}O_2(g) \rightarrow NO_2(g)$   $\Delta H_2$
  - A)  $\Delta H_1^{\circ}$  for NO<sub>2</sub>(g) =  $\Delta H_2$
  - B)  $\Delta H_f^{\circ}$  for NO(g) =  $\Delta H_1$
  - C)  $\Delta H_{\rm f}^{\circ} = \Delta H_2$
  - D)  $\Delta H_f^{\circ}$  for NO<sub>2</sub>(g) =  $\Delta H_2 + \frac{1}{2}\Delta H_1$
  - E) none of these
- 9) (1.5 point) Which of the following statements is true?
  - A) The exact location of an electron can be determined if we know its energy.
  - B) An electron in a 2s orbital can have the same n, l, and  $m_l$  quantum numbers as an electron in a 3s orbital.
  - C) 32 electrons is the maximum number of electrons that can be contained in all of the orbitals with n = 4
  - D) In the buildup of atoms, electrons occupy the 4f orbitals before the 6s orbitals.
  - E) Only three quantum numbers are needed to uniquely describe an electron.
- 10) (1 point) Gaseous ethane,  $C_2H_4$  reacts with according to the following equation:  $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2 + H_2O(g)$ What volume of oxygen gas at STP is needed to react with 5.75 g of ethene,  $C_2H_4$ ?

| <br>. <b>.</b> | <br> |     |    | - | <br> |   | <br>   |   |       |       |       | <br>   |   | <br>  | <br> | <br> |   |    |   |    |   |       | <br>   |   | <br>   |   | <br> |   | <br> |    |       | <br> |    |    |    |   | <br> |    |    | <br>  | <br>   |   | <br>   | <br> |    |  |
|----------------|------|-----|----|---|------|---|--------|---|-------|-------|-------|--------|---|-------|------|------|---|----|---|----|---|-------|--------|---|--------|---|------|---|------|----|-------|------|----|----|----|---|------|----|----|-------|--------|---|--------|------|----|--|
| <br>           | <br> | • • | ٠. | - | <br> | • | <br>٠. | • | <br>• | <br>• | <br>• | <br>٠. | • | <br>• | <br> | <br> |   | ٠. |   | ٠. |   | <br>- | <br>٠. | • | <br>٠. | • | <br> | • | <br> | ٠. | <br>• | <br> | ٠. | ٠. | ٠. | • | <br> | ٠. | ٠. | <br>• | <br>٠. | • | <br>٠. | ٠.   | ٠. |  |
| <br>           | <br> |     |    |   | <br> |   | <br>   |   |       |       |       | <br>   |   | <br>  | <br> | <br> | _ |    | _ |    | _ | <br>_ | <br>   | _ | <br>   |   | <br> | _ | <br> |    | <br>  | <br> |    |    |    |   | <br> |    |    | <br>  | <br>   |   | <br>   | <br> |    |  |

## 11) (1.5 points) Consider the reaction:

$$\mathrm{C_2H_5OH}(l) + 3\mathrm{O_2}(g) \rightarrow 2\mathrm{CO_2}(g) + 3\mathrm{H_2O}(l), \Delta H = -1.37 \times 10^3 \,\mathrm{kJ}$$

When a 21.1-g sample of ethyl alcohol is burned, how much energy is released as heat?

- A) 0.458 kJ
- B) 0.627 kJ
- C) 2.89 x 10<sup>4</sup> kJ
- D)  $6.27 \times 10^2 \text{ kJ}$
- E) 2.18 kJ

# **Scratch Paper**