

CHEMISTRY 101 SECOND EXAM (162)

Name:	Date: 30/4/2017
Student no	Section:

<u>Useful Information:</u> Gas Constant R= 0.08206 L.atm/K.mol, Specific heat of H_2O =4.18 J/g. °C 1 atm. = 760 mmHg.

H ¹		_															He ²
Li^3	\mathbf{Be}^4											\mathbf{B}^5	\mathbb{C}^6	\mathbf{N}^7	\mathbf{O}_8	\mathbf{F}^9	\mathbf{Ne}^{10}
6.941	9.012											10.81	12.01	14.01	16	19	20.18
\mathbf{Na}^{11}	\mathbf{Mg}^{12}											\mathbf{Al}^{13}	Si ¹⁴	\mathbf{P}^{15}	\mathbf{S}^{16}	\mathbf{Cl}^{17}	\mathbf{Ar}^{18}
22.99	24.31												28.09	30.97	32.06	35.45	39.95
\mathbf{K}^{19}	Ca^{20}	\mathbf{Sc}^{21}	Ti^{22}	\mathbf{V}^{23}	Cr ²⁴	\mathbf{Mn}^{25}	Fe ²⁶	\mathbf{Co}^{27}	Ni^{28}	Cu ²⁹	\mathbf{Zn}^{30}	Ga^{31}	Ge^{32}	\mathbf{As}^{33}	Se ³⁴	\mathbf{Br}^{35}	\mathbf{Kr}^{36}
39.10		44.96	47.9			54.94	55.85	58.93				69.72	72.59	74.92	78.96		83.8
\mathbf{Rb}^{37}	Sr ³⁸	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	\mathbf{Nb}^{41}	Mo ⁴²	\mathbf{Tc}^{43}	Ru ⁴⁴	Rh ⁴⁵	Pd^{46}	\mathbf{Ag}^{47}	Cd^{48}	\mathbf{In}^{49}	Sn ⁵⁰	\mathbf{Sb}^{51}	Te ⁵²	\mathbf{I}^{53}	\mathbf{Xe}^{54}
85.47	87.62	88.91	91.22			99.91	101.1	102.91		107.87		114.8	118.69	121.75	127.6	126.9	131.3
Cs^{55}	Ba ⁵⁶	57-71	\mathbf{Hf}^{72}	Ta ⁷³	W^{74}	Re ⁷⁵	\mathbf{Os}^{76}	\mathbf{Ir}^{77}	Pt ⁷⁸	Au^{79}	\mathbf{Hg}^{80}	\mathbf{Tl}^{81}	\mathbf{Pb}^{82}	Bi ⁸³	Po ⁸⁴	At^{85}	Rn ⁸⁶
	137.3	*	178.5	180.9	183.85	186.2	190.2	192.2	195.1			204.37	207.2	208.98	210	210	222

Important instructions:

- 1. Examination time: 60 Minutes.
- 2. Put any books/notebooks/sheets away and turn off your cell phone.
- 3. Write your name before starting with the questions.
- 4. The exam contains 5 pages in total, including the cover page and the scratch papers.
- 5. You may not borrow a calculator.
- 6. Any cheating signs may cause you to be expelled from the exam.

1)	(1.0 point) <u>STP</u> for gases means: A) 0 atm, 0 K B) 1 atm, 25 °C C) 0 atm, 1 K D) 1 atm, 0 K E) 1 atm, 273 K
2)	(1.0 point) For a particular process $q = +20$ kJ and $w = +15$ kJ. Which of the following statements is <u>true</u> ? A) Heat flows from the system to the surroundings. B) The system does work on the surroundings. C) $\Delta U = 35$ kJ D) B and C E) All of the above are true.
3)	(1.0 point) Given the reaction: $2Ca(s) + O_2(g) \rightarrow 2CaO(s)$,
	A) Which species is oxidized
	B) Write the reduction half reaction
4)	(1.0 point) A chunk of lead at 99.5°C was added to 100.0 g of water at 25.5°C. The specific heat of lead is 0.129 J/g°C, and the specific heat of water is 4.18 J/g°C. When the temperature stabilized, the temperature of the mixture was 30.9°C. Assuming no heat was lost to the surroundings, what was the mass of lead added?
5)	 (2.0 points) A precipitation reaction occurs between aqueous sodium phosphate, Na₃PO₄ and aqueous barium chloride, BaCl₂: A) Complete and balance the molecular equation that represents this reaction: Na₃PO₄ (aq) +BaCl₂ (aq) →(s) +
	B) Write the Ionic equation:
	C) Write the net ionic equation:

6)	(1.5 points) An unknown diprotic acid requires 44.39 mL of 0.111 M NaOH to completely neutralize a 0.580-g sample of the acid. Calculate the approximate molar mass of the acid.								
7)	(1.0 point) A gas sample is held at constant pressure. The gas occupies 3.62 L of volume when the temperature is 29.6°C. Determine the temperature at which the volume of the gas is 3.42 L.								
8)	(1.5 points) What is the amount of heat released when 44.4 mL of 0.330 M sulfuric acid reacts with 28.3 mL of 0.399 M potassium hydroxide? $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(l)$ $\Delta H = -111.6 kJ/mol$								
9)	(1.0 point) Which conditions of P and T are most representing the ideal gas with low n (moles)?A) high P, high T								
	B) low P, low T								
	C) high P, low T								
	D) low P, high T								
	E) no relation								
	L) no relation								

- **10**) (1.0 point) If all of the chloride in a 3.734-g sample of an unknown metal chloride is precipitated as AgCl with 70.90 mL of 0.2010 M AgNO3, what is the percentage of chloride in the sample?
 - A) %50.52
 - B) %13.53
 - C) %1.425
 - D) %7.391
 - E) none of the above
- **11**) (1.0 point) On a cold winter day, a steel metal box feels colder than a wooden box of identical size because:
 - A) The specific heat of steel is higher than the specific heat of wood.
 - B) The specific heat of steel is lower than the specific heat of wood.
 - C) The density of steel is higher than the density of wood.
 - D) The mass of steel is more than wood so it loses heat faster.
 - E) Two of the above statements are true.
- **12**) (1.5 points) Consider the following processes:

$$E + A \rightarrow D$$

$$^{1/2}A \rightarrow B$$

$$^{1/2}A \rightarrow B$$

$$^{1/2}B$$

$$^{1/2}A \rightarrow B$$

$$^{1/2}B$$

Calculate ΔH for: $B \rightarrow E + 2C$

- A) 325 kJ/mol
- B) 525 kJ/mol
- C) -175 kJ/mol
- D) -325 kJ/mol
- E) none of these
- 13) (1.5 point) Oxygen gas, generated by the reaction $2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$ is collected over water vapor at 27°C in a 1.55-L vessel at a total pressure of 1.00 atm. (The vapor pressure of H_2O at 27°C is 26.0 torr.) How many moles of $KClO_3$ were consumed in the reaction?
 - A) 0.0405 moles
 - B) 0.0912 moles
 - C) 0.0608 moles
 - D) 0.0434 moles
 - E) 1.50 moles

SCRATCH PAPER