

CHEMISTRY 101 SECOND EXAM

Name:	Date: 06/05/2013
Student no	Section:

<u>Useful Information:</u> Gas Constant R=0.08206 L.atm/K.mol, Specific heat of $H_2O=4.18$ J/g. °C

H ¹		_															He ²
\mathbf{Li}^3	\mathbf{Be}^4											\mathbf{B}^5	\mathbb{C}^6	\mathbf{N}^7	\mathbf{O}_8	\mathbf{F}^9	Ne^{10}
6.941	9.012											10.81	12.01	14.01	16	19	20.18
\mathbf{Na}^{11}	\mathbf{Mg}^{12}											\mathbf{Al}^{13}	Si ¹⁴	\mathbf{P}^{15}	\mathbf{S}^{16}	\mathbf{Cl}^{17}	\mathbf{Ar}^{18}
	24.31											26.98	28.09	30.97	32.06	35.45	39.95
\mathbf{K}^{19}	Ca^{20}	\mathbf{Sc}^{21}	Ti^{22}	\mathbf{V}^{23}	Cr ²⁴	Mn ²⁵	Fe^{26}	Co ²⁷	Ni^{28}	Cu ²⁹	\mathbf{Zn}^{30}	Ga^{31}	Ge ³²	As^{33}	Se ³⁴	Br ³⁵	Kr ³⁶
		44.96	47.9		51.99	54.94	55.85	58.93	58.71	63.54		69.72	72.59	74.92	78.96	79.9	83.8
	\mathbf{Sr}^{38}	\mathbf{Y}^{39}	\mathbf{Zr}^{40}	\mathbf{Nb}^{41}	Mo ⁴²	\mathbf{Tc}^{43}	Ru ⁴⁴	Rh ⁴⁵	Pd^{46}	\mathbf{Ag}^{47}	Cd^{48}	\mathbf{In}^{49}	\mathbf{Sn}^{50}	\mathbf{Sb}^{51}	Te ⁵²	\mathbf{I}^{53}	Xe^{54}
			91.22	92.91	95.94	99.91	101.1	102.91	106.4	107.87		114.8	118.69		127.6		131.3
Cs^{55}	Ba ⁵⁶	57-71	\mathbf{Hf}^{72}	Ta^{73}	\mathbf{W}^{74}	Re^{75}	\mathbf{Os}^{76}	\mathbf{Ir}^{77}	Pt ⁷⁸	Au ⁷⁹	\mathbf{Hg}^{80}	\mathbf{Tl}^{81}	Pb ⁸²	Bi ⁸³	Po ⁸⁴	At ⁸⁵	Rn ⁸⁶
132.9	137.3	*	178.5	180.9	183.85	186.2	190.2	192.2	195.1			204.37	207.2	208.98	210	210	222

Write the best fit answer of the following questions in this table:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Q9	Q10	Q11	Q12	Q13	Q14	Tota	l (13)

1. The				x 10 ² mL of 0.6 M N	aOH solution is:
	a) 0.65	b) 11.25	c) 4.75	d) 9.60	
2. Who		0.30 M AgNO ₃ and	d 300 mL of 0.30) M KI are mixed the	e following reaction
	occurs:	$O_{3(aq)} + KI_{(aq)}$	\rightarrow AgI _(s) + KNC	$O_{3(aq)}$	
Th	e concentration a) 0.20 M	on of NO_3^- in the finb) 0.18		2 M d) 0.15	M
3. In t	he following h	alf reaction:			
On	a) No electron b) Two electron C) Two electron c)	O ₄ ²⁻ → 2 CO ₂ ving descriptions is ons are lost or gained crons are gained. crons are lost. electron is lost.			
4. Calo	$^{1}/_{2} \text{ Al}_{2}$	$2Al_{(s)}$ +	and their respective 3 / ₄ $O_{2(g)}$	2 $Fe_{(s)} + Al_2O_{3(s)}$ e enthalpy changes: $\frac{\Delta H/kJ}{+834.9}$ -1644.4	
	a) 810 kJ	b) 847.	6 kJ	c) 2492 kJ	d) -847.6 kJ
5. Con	nplete the follo of them:	wing reactions the	n write the <i>IONI</i>	C and the NET IONI	C equation for each
a)					
	Net Ionic:				
b)					
	Net Ionic:				

6. How	w many mi	liliters of ($0.15 \text{ M H}_2\text{S}$	O_4 are re	equired to r	neutralize	e 8.20 g	of NaHCO ₃ ,	
accordi	ng to the fo	llowing equa	ation:						
	H_2SO_4 (ac) + 2 NaHC	CO _{3 (aq)} —	►Na ₂ SO ₂	$_{(aq)}$ + 2 H_2O_0	(aq)			
	a) 162.5 mI		b) 325 mL	C) 650 mL		d) 32.5 m	L	
			75 g of ethano heat of ethano			alculate 1	the final te	mperature of	
	a) 9 °C		b) 25 °C	c)	16 °C	d) -9	9 ℃		
8. Amn	nonia, NH ₃ ,	burns accor	ding to the fo	llowing e	equation:				
4	$4 \text{ NH}_{3(g)} + 3$	$O_{2(g)} \longrightarrow$	$2 N_{2(g)} + 6 H_2$	$_{2}O_{(g)}$ Δl	H = -1267 K	J/mol			
What	is the entha	lpy change	(ΔH) released	by burn	ing 35.8 g of	ammon	ia (NH ₃).		
	a) 667 KJ		b) 2668 KJ	Γ ,	c) -2668 KJ		d) -667 K	(J	
	insulated fla a) 54.7°C	ask. What is	liquid at 74 the final temp b) 167.7°	perature (C	of the combined c) 35.1	ned liqui 13°C	id? d) 67		
10. The	pressure at	which 0.25	mole of N ₂ (g) occupy	1×10^4 mL at	t 100 °C	will be:		
	a) 2.05 atm		b) 0.765 atm		c) 0.205	atm		d) 7.65 atm	
		_	t produces 100 4 KO ₂ + 2 CO				wing equa	tion is:	
	a) 8.45	b) 44.64	c)	3.17		d) 4.23		
	ne density o noble gas is Ne	:	s equals 1x10	o ³⁻ g/mL a	at -5 °C and	a pressu	re of 418 t	orr, then this	
°C a		are both pla CTION OC		L flask a		it is the f			

- 14. If an equal masses of $O_2(g)$ and HBr(g) present in separate containers of equal volume and temperature, which one of the following statements is true?
 - a) The pressure in the O_2 container is greater than that in HBr container.
 - b) The pressure in the HBr container is greater than that in O_2 container.
 - c) The pressure of both gases are the same.
 - d) None of the above.