CHEMISTRY 101 SECOND EXAM | Name: | Date: 06/05/2013 | |------------|------------------| | Student no | Section: | <u>Useful Information:</u> Gas Constant R=0.08206 L.atm/K.mol, Specific heat of $H_2O=4.18$ J/g. °C | H ¹ | | _ | | | | | | | | | | | | | | | He ² | |-----------------------|-------------------------|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|--------------------|-------------------------|--------------------|--------------------|--------------------|-------------------------|-------------------------|-------------------------|--------------------|-------------------------| | \mathbf{Li}^3 | \mathbf{Be}^4 | | | | | | | | | | | \mathbf{B}^5 | \mathbb{C}^6 | \mathbf{N}^7 | \mathbf{O}_8 | \mathbf{F}^9 | Ne^{10} | | 6.941 | 9.012 | | | | | | | | | | | 10.81 | 12.01 | 14.01 | 16 | 19 | 20.18 | | \mathbf{Na}^{11} | \mathbf{Mg}^{12} | | | | | | | | | | | \mathbf{Al}^{13} | Si ¹⁴ | \mathbf{P}^{15} | \mathbf{S}^{16} | \mathbf{Cl}^{17} | \mathbf{Ar}^{18} | | | 24.31 | | | | | | | | | | | 26.98 | 28.09 | 30.97 | 32.06 | 35.45 | 39.95 | | \mathbf{K}^{19} | Ca^{20} | \mathbf{Sc}^{21} | Ti^{22} | \mathbf{V}^{23} | Cr ²⁴ | Mn ²⁵ | Fe^{26} | Co ²⁷ | Ni^{28} | Cu ²⁹ | \mathbf{Zn}^{30} | Ga^{31} | Ge ³² | As^{33} | Se ³⁴ | Br ³⁵ | Kr ³⁶ | | | | 44.96 | 47.9 | | 51.99 | 54.94 | 55.85 | 58.93 | 58.71 | 63.54 | | 69.72 | 72.59 | 74.92 | 78.96 | 79.9 | 83.8 | | | \mathbf{Sr}^{38} | \mathbf{Y}^{39} | \mathbf{Zr}^{40} | \mathbf{Nb}^{41} | Mo ⁴² | \mathbf{Tc}^{43} | Ru ⁴⁴ | Rh ⁴⁵ | Pd^{46} | \mathbf{Ag}^{47} | Cd^{48} | \mathbf{In}^{49} | \mathbf{Sn}^{50} | \mathbf{Sb}^{51} | Te ⁵² | \mathbf{I}^{53} | Xe^{54} | | | | | 91.22 | 92.91 | 95.94 | 99.91 | 101.1 | 102.91 | 106.4 | 107.87 | | 114.8 | 118.69 | | 127.6 | | 131.3 | | Cs^{55} | Ba ⁵⁶ | 57-71 | \mathbf{Hf}^{72} | Ta^{73} | \mathbf{W}^{74} | Re^{75} | \mathbf{Os}^{76} | \mathbf{Ir}^{77} | Pt ⁷⁸ | Au ⁷⁹ | \mathbf{Hg}^{80} | \mathbf{Tl}^{81} | Pb ⁸² | Bi ⁸³ | Po ⁸⁴ | At ⁸⁵ | Rn ⁸⁶ | | 132.9 | 137.3 | * | 178.5 | 180.9 | 183.85 | 186.2 | 190.2 | 192.2 | 195.1 | | | 204.37 | 207.2 | 208.98 | 210 | 210 | 222 | Write the best fit answer of the following questions in this table: | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | |----|-----|-----|-----|-----|-----|------|--------| | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | Tota | l (13) | | | | | | | | | | | 1. The | | | | x 10 ² mL of 0.6 M N | aOH solution is: | |---------|---|---|---|--|----------------------| | | a) 0.65 | b) 11.25 | c) 4.75 | d) 9.60 | | | 2. Who | | 0.30 M AgNO ₃ and | d 300 mL of 0.30 |) M KI are mixed the | e following reaction | | | occurs: | $O_{3(aq)} + KI_{(aq)}$ | \rightarrow AgI _(s) + KNC | $O_{3(aq)}$ | | | Th | e concentration
a) 0.20 M | on of NO_3^- in the finb) 0.18 | | 2 M d) 0.15 | M | | 3. In t | he following h | alf reaction: | | | | | On | a) No electron b) Two electron C) Two electron c) | O ₄ ²⁻ → 2 CO ₂
ving descriptions is
ons are lost or gained
crons are gained.
crons are lost.
electron is lost. | | | | | 4. Calo | $^{1}/_{2} \text{ Al}_{2}$ | $2Al_{(s)}$ + | and their respective 3 / ₄ $O_{2(g)}$ | 2 $Fe_{(s)} + Al_2O_{3(s)}$
e enthalpy changes:
$\frac{\Delta H/kJ}{+834.9}$ -1644.4 | | | | a) 810 kJ | b) 847. | 6 kJ | c) 2492 kJ | d) -847.6 kJ | | 5. Con | nplete the follo
of them: | wing reactions the | n write the <i>IONI</i> | C and the NET IONI | C equation for each | | a) | | | | | | | | Net Ionic: | | | | | | b) | | | | | | | | Net Ionic: | | | | | | 6. How | w many mi | liliters of (| $0.15 \text{ M H}_2\text{S}$ | O_4 are re | equired to r | neutralize | e 8.20 g | of NaHCO ₃ , | | |---------|------------------------------------|----------------------------|---|----------------------------------|-------------------------|-------------------|------------------------|-------------------------|--| | accordi | ng to the fo | llowing equa | ation: | | | | | | | | | H_2SO_4 (ac |) + 2 NaHC | CO _{3 (aq)} — | ►Na ₂ SO ₂ | $_{(aq)}$ + 2 H_2O_0 | (aq) | | | | | | a) 162.5 mI | | b) 325 mL | C |) 650 mL | | d) 32.5 m | L | | | | | | 75 g of ethano
heat of ethano | | | alculate 1 | the final te | mperature of | | | | a) 9 °C | | b) 25 °C | c) | 16 °C | d) -9 | 9 ℃ | | | | 8. Amn | nonia, NH ₃ , | burns accor | ding to the fo | llowing e | equation: | | | | | | 4 | $4 \text{ NH}_{3(g)} + 3$ | $O_{2(g)} \longrightarrow$ | $2 N_{2(g)} + 6 H_2$ | $_{2}O_{(g)}$ Δl | H = -1267 K | J/mol | | | | | What | is the entha | lpy change | (ΔH) released | by burn | ing 35.8 g of | ammon | ia (NH ₃). | | | | | a) 667 KJ | | b) 2668 KJ | Γ , | c) -2668 KJ | | d) -667 K | (J | | | | insulated fla
a) 54.7°C | ask. What is | liquid at 74
the final temp
b) 167.7° | perature (
C | of the combined c) 35.1 | ned liqui
13°C | id? d) 67 | | | | 10. The | pressure at | which 0.25 | mole of N ₂ (g |) occupy | 1×10^4 mL at | t 100 °C | will be: | | | | | a) 2.05 atm | | b) 0.765 atm | | c) 0.205 | atm | | d) 7.65 atm | | | | | _ | t produces 100
4 KO ₂ + 2 CO | | | | wing equa | tion is: | | | | a) 8.45 | b |) 44.64 | c) | 3.17 | | d) 4.23 | | | | | ne density o
noble gas is
Ne | : | s equals 1x10 | o ³⁻ g/mL a | at -5 °C and | a pressu | re of 418 t | orr, then this | | | °C a | | are both pla
CTION OC | | L flask a | | it is the f | | | | - 14. If an equal masses of $O_2(g)$ and HBr(g) present in separate containers of equal volume and temperature, which one of the following statements is true? - a) The pressure in the O_2 container is greater than that in HBr container. - b) The pressure in the HBr container is greater than that in O_2 container. - c) The pressure of both gases are the same. - d) None of the above.