

Department of Mathematics and General Sciences

Physical Science (SCI101) Second Major Exam

Second Semester, Term 132 Date: Sunday 27/4/2014

Name:	
ID number:	
Section number or time:	
Instructor's name:	

Important instructions:

- 1. Examination time: 60 minutes.
- 2. Write your name before starting with the questions.
- 3. Switch off your mobile phone and put any books and notes away.
- 4. You should have 5 pages in total, including this page and a scratch paper.
- 5. You may use a calculator but you may *not* borrow one.

Good Luck!

Mark	

Q1.

Part 1: 10 multiple choice questions, 1 point each. Circle the letter of the most correct answer using a pen. Use g = 10 m/s² and $G = 6.67 \times 10^{-11}$ N.m²/kg².

Falling on sand is safer than falling on solid floor because:

	b) both the time ofc) the time of imp	of impact and the forceast is increased which	e of impact are reduced h reduces the force of i e of impact are increas	l mpact		
Q2.	Consider a ball thrown straight up. During its flight (neglecting air resistance): a) its mechanical energy remains unchangedb) its kinetic energy is conservedc) its potential energy remains zerod) All of the above					
Q3.	A mouse has a kinetic energy of 20 J. If it doubles its speed then its kinetic energy becomes:					
	a) 40 J	b) 60 J	c) 80 J	d) 30 J		
Q4.	The gravitational attractive force between two objects is $0.01~N$ when they are 6 m apart. What is the force between them when the distance between them becomes 2 m? a) $0.09~N$ b) $0.02~N$ c) $0.03~N$ d) $0.003~N$					
Q5.	What is the momentum of a 1200 kg car moving at 90 km/h?					
·	a) 108000 N.s	b) 13.3 N.s	c) 48 N.s	d) 30000 N.s		
Q6.	A car having a momentum of 20000 N.s hits a wall and stops in 0.2 seconds. How much force is exerted on the car? a) 100000 N					
	a) 100000 IV	b) 4000 IV	c) 20000 IV	<i>u)</i> 5000 IV		
Q7.	The kinetic energy of a bike is increased from 1500 J to 2000 J. How much to was done on the bike?					
	a) 2000 J	b) 500 J	c) 3500 J	d) -500 J		
Q8.	A 0.1 kg falling ball hits the ground at 10 m/s and bounces back at 7 m/s. How impulse is delivered to the ball?					
	a) 14.5 N.s	b) 0.3 N.s	c) 1.7 N.s	d) 0.45 N.s		
Q9.	If a 60% efficient machine is supplied with 200 J of energy, how much is its useful energy output?					
	a) 140 J	b) 60 J	c) 80 J	d) 120 J		
Q10.		$6000 \text{ kg, when the di}$ b) $1.6 \times 10^4 \text{ N}$	force between two idestance between their constant $1.2 \times 10^{-6} \text{ N}$	entical school buses, each enters is 3 m? d) 1.9×10^{-3} N		
		±10a v	·, r ··· · ·			

Part 2: Solve each of the following three problems. Show all the steps of your work in the provided space and include the appropriate units. Use $g = 10 \text{ m/s}^2$.

- Q1. (4 points) On a horizontal floor, a man pulls a 20 kg crate for a distance of 5 m from rest. He applies a horizontal pulling force of $F_1 = 60$ N, and the force of friction between the crate and the ground is $F_2 = 10$ N. Calculate:
 - a) The work done by the man
 - b) The work done by friction
 - c) The work done by gravity
 - d) The final speed of the crate

Q2. (3 points) While on ice, a 70 kg skater (moving at 3 m/s) crashes with another 50 kg skater (moving at 1.2 m/s in the same direction). He grasps the other skater and they continue moving together. Ignoring frictional forces, calculate their speed after the crash.

- Q3. (3 points) A 0.2 kg stone is dropped from rest from the top of a 20 m high building. Ignoring air resistance, calculate:
 - a) The initial mechanical energy of the stone

b) The potential and kinetic energies of the stone after falling 5 m

c) The kinetic energy of the stone just before hitting the ground

Scratch paper. DO NOT remove