

PRINCE SULTAN UNVIERSITY Department of Mathematics and General Sciences

Physics II (PHY205)

Second Major Exam

Term 171

Monday 11/12/2017

Name:	
Student ID #:	
Section # or time:	

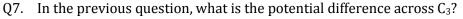
Instructions:

- 1. Examination time: **1 hour**.
- 2. Write your name before starting with the questions.
- 3. <u>Switch off your mobile phone</u> and put any books and notes away.
- 4. Check that you have **5 pages** in total.
- 5. You may use a calculator but you may not borrow one.

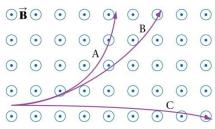
Constants

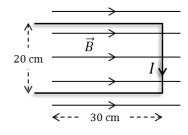
Elementary charge	$e = 1.6 \times 10^{-19} \text{ C}$
Electron mass	$m_e=9.11 imes10^{-31}~{ m kg}$
Proton mass	$m_p=1.67 imes 10^{-27}~{ m kg}$
Coulomb constant	$k = 9 \times 10^9 \text{ N.m}^2/\text{C}^2$
Permittivity of free space	$\varepsilon_0 = \frac{1}{4\pi k} = 8.85 \times 10^{-12} \text{ C}^2/\text{N.m}^2$
Permeability of free space	$\mu_0 = 4\pi imes 10^{-7}$ T.m/A

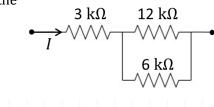
Mark

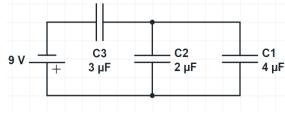

Part 1 (7 points):

Indicate the answer choice that best completes the statement or answers the question

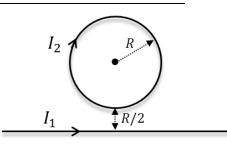

- Q1. Three charged particles enter a uniform magnetic field and move as indicated. If the particles have identical masses and speeds, which of the following statements is correct?
 - a) $|q_A| > |q_B| > |q_C|$, q_A and q_B are positive while q_C is negative
 - b) $|q_A| > |q_B| > |q_C|$, q_A and q_B are negative while q_C is positive
 - c) $|q_A| < |q_B| < |q_C|$, q_A and q_B are positive while q_C is negative
 - d) $|q_A| < |q_B| < |q_C|$, q_A and q_B are negative while q_C is positive
- Q2. The time constant for an RC circuit is 20 seconds. In a charging circuit, what is the time required for the current to drop to 10% of its initial value?
 - a) 2.1 seconds
 - b) 58.6 seconds
 - c) 46.1 seconds
 - d) 38.0 seconds
- Q3. The primary coil of a transformer has 150 turns and its secondary coil has 450 turns. If the current in the primary coil is 6 A, what is the current in the secondary coil?
 - a) 2 A
 - b) 3 A
 - c) 9 A
 - d) 18 A
- Q4. The shown current carrying wire (I = 6 A clockwise) enters in a region of constant magnetic field of 2 T pointing in the indicated direction. What is the net magnetic force on the wire?
 - a) 9.6 N
 - b) 7.2 N
 - c) 72 N
 - d) 2.4 N

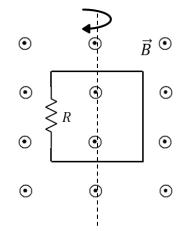

Q5. If the potential difference across the $6 \text{ k}\Omega$ resistance is 3 V, what is the magnitude of the current *I* through the 3 k Ω resistance?


- a) 0.25 mA
- b) 0.50 mA
- c) 0.75 mA
- d) 1.0 mA
- Q6. In the figure, what is the equivalent capacitance of the three capacitors?
 - a) 2.0 μF
 - b) 0.5 μF
 - c) 1.0 μF
 - d) 3.0 μF

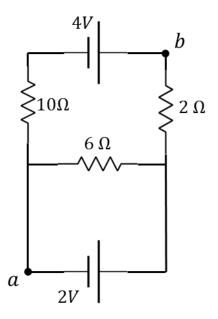


- a) 3 V
- b) 6 V
- c) 9 V
- d) 12 V





Part 2 (8 points): Solve the following 3 problems in the provided space.


Q1. (3 points) Find the magnitude and direction of the net magnetic field at the center of the loop shown in the figure, given that $I_1 = 3$ A, $I_2 = 2$ A, and R = 10 cm.

Q2. (2 points) A square loop of wire of side length 10 cm located in the *xy*-plane is placed in a magnetic filed pointing in the \hat{z} direction. The resistance of the loop is $R = 2\Omega$. If the magnetic field is decreased from 2.5 T to 0.1 T during 0.2 seconds and at the same time the loop is rotated by 60° about the +y-axis clockwise, find the magnitude and direction of the induced current in the loop during that time.

Q3. (3 points) Find the currents in the shown circuit.

Name: