

Prince Sultan University

Department of Mathematics & Physics

PHY 205- General Physics2 Second Exam

First Semester, Term 121 Thursday 13/12/2012

Examination Time: 60 minutes

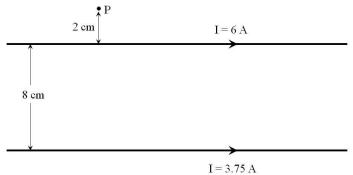
Name (Please Print)	Student I.D
CONSTANTS:	

$$k=9\times10^{9}\frac{N.m^{2}}{C^{2}}$$
, $\varepsilon_{o}=8.85\times10^{-12}\frac{C^{2}}{N.m^{2}}$, $\mu_{o}=4\pi\times10^{-7}\frac{T.m}{A}$

Important Instructions:

- 1. You can use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may <u>NOT</u> borrow a <u>calculator</u> from anyone.
- 3. Do not use **RED pen**.
- 4. This is a closed books and notes exam. Do **NOT** use notes or textbooks.
- 5. There should be <u>NO</u> talking during the examination.
- 6. Your will be <u>expelled</u> immediately from the exam if your mobile phone is seen or heard.
- 7. Any signs of **cheating** may cause you being expelled from the exam.
- 8. This examination has <u>2 parts</u>. <u>Part 1</u> has 5 multiple choice questions, each question worth 1 point. Part 2 has four workout problems each problem worth 3 points.

Make sure your paper has all the questions and problems.


	Possible Score	Student's Score	Student's Total Score
Part 1 Questions	5	1 x	
P. # 1	3		
P. # 2	3		
P. # 3	3		
P. # 4	3		
Total	17		/15

Part 1: 5 Multiple Choice Questions (1 mark each)

			C has a speed 7x10 circle. What will b		ired to use a magnetic this circle?
a) 0.5 1	m	b) 12 m	c) 7 m		d) 2 m
	solenoid. Which				ht line along the axis on's motion within the
a)The	proton will be be	nt in a circular pa	th.		
b)The	proton will conti	nue in its straight	path at constant ve	elocity.	
c) The	proton will conti	inue in its straigh	t path and slow do	wn.	
d)The	proton will conti	nue in its straight	path and speed up		
shown		_	electron be moving	if it is to experie	ne right of the wire, as nee a magnetic force
a)	into the page.		I '	<u> </u>	
b)	out of the page.			• e-	
c)	toward the botton	n of the page.			
d)	toward the top of	the page.			

- 4- The magnetic field produced at the centre of a current carrying circular wire is
- a) directly proportional to the square of the radius of the circular wire
- b) directly proportional to the radius of the circular wire
- c) inversely proportional to the square of the radius of the circular wire
- d) inversely proportional to the radius of the circular wire

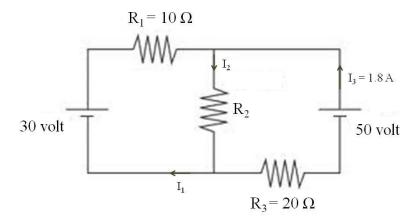
5-Two long parallel wires 8 cm apart carry electric currents of 6 A and 3.75 A in the same direction. What is the magnitude of the net magnetic field at point P which is 2 cm away from the larger current as shown?

- a) 6.75x10⁻⁵ T
- b) 5.25x10⁻⁵ T
- c) $6.75 \times 10^{-4} \text{ T}$
- d) 5.25×10^{-4} T

<u>Part 2: Solve the following four problems in the space provided in between showing all</u> your steps (3 marks each)

Question 1(3 marks): An electric heater is rated at 1100 watt when operated at 220 volt.

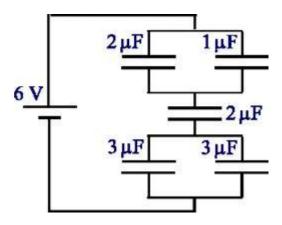
a) How much charge passes through this electric heater in 3 minutes?


b) How many electrons pass through this electric heater in 3 minutes?

c) what is the resistance of this electric heater?

Question 2(3 marks): A 80 μ f capacitor is connected to a 50 kΩ resistor thorough a battery of 200 volts. If the circuit is closed at t=0, find
a) the time constant of the circuit.
b) the charge on the capacitor at t=2.5 s.
c) the current in the circuit at t=1.5 s'

Question 3(3 marks):


In the circuit shown, use Kirchhoff's rules to find the values of the unknowns $\ R_2, \ I_1, \ I_2$

Question 4(3 marks):

In the circuit shown, find

a) the equivalent capacitance in the circuit.

b) the charge and voltage on the middle $\,2~\mu f$ capacitor.