

Prince Sultan University Department of Mathematics & Physics PHY 205- General Physics2 First Exam Second Semester, Term 162 Monday 10/4/2017 Examination Time: 60 minutes

Examination Time: 60 minutes

Name (Please Print)

Student I.D.

CONSTANTS:

$$k = 9 \times 10^9 \frac{N.m^2}{C^2}$$
, $\varepsilon_o = 8.85 \times 10^{-12} \frac{C^2}{N.m^2}$

Proton mass = $1.67 \times 10^{-27} kg$, Proton charge = $1.6 \times 10^{-19} C$

Important Instructions:

- 1. You can use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may <u>NOT</u> borrow a <u>calculator</u> from anyone.

3. Do not use **<u>RED pen</u>**.

4. This is a closed books and notes exam. Do <u>NOT</u> use notes or textbooks.

5. There should be <u>NO</u> talking during the examination.

6. Your will be <u>expelled</u> immediately from the exam if your mobile phone is seen or heard.

7. Any signs of <u>cheating</u> may cause you being expelled from the exam.

8. This examination has <u>2 parts</u>. <u>Part 1</u> has <u>4 multiple choice</u> questions, each question worth <u>1</u> point. Part 2 has three workout problems all worth <u>9 points</u>.

Make sure your paper has all the questions and problems.

Part 1: 4 Multiple Choice Questions (1 mark each)

1- A proton has a speed of 3.5×10^5 m/s at a point where the electric potential is 600 V. It moves through a point where the electric potential is 1000 V. What is the proton's speed at this second point?

a) 1.7×10^5 m/s b) 2.1×10^5 m/s c) 9.2×10^5 m/s d) 3.2×10^5 m/s

2- Consider an electric field of magnitude 4500 N/C directed in the positive x-direction. Calculate the work done by this electric field on a charge of 200 μ C that travels from the point (2m, 7m) to the point (8m, 5m) in the electric field.

a) 2.7×10^4 J b) 1.35×10^4 J c) 5.4 J d) 2.7 J

3- A light bulb is rated at 55 watt when operated at 110 volt. How many electrons pass through this light bulb in 5 minutes?

$2.75 - 10^{21}$	$1 - 1 - 10^{19}$	(-) $(-)$	$1) 0 29 - 10^{20}$
a) 5./5x10	D) 1.02X10	$C) 0.25 \times 10$	a) 9.38x10

4- A Porcelain-filled parallel-plate capacitor is designed with plate area of 24 cm^2 and plate separation 0.4 mm. If this capacitor is connected to a 28 volt battery, calculate the amount of charge carried by each plate of this capacitor given that the dielectric constant of Porcelain is 6.

a) 8.9 nC	b) 1.5 nC	c) 11.3 pC	d) 1.9 pC
· · · · · · · · · · · · · · · · · · ·	,	/ 1	/ 1

<u>Part 2: Solve the following three problems in the space provided in between showing all your steps.</u>

Problem 1 (4 marks, 1 mark each): Three point charges $3 \mu C$, $-3\mu C$, and $5 \mu C$ are located at the points (2 cm, 0), (0, 2 cm), and (0, 0), respectively.

a) Calculate the magnitude and direction of the electric field at the point (2 cm, 2 cm)

b) Calculate the magnitude of the electric potential generated at the point (0, -2 cm)

c) What is the net electric flux through a sphere of radius 2.5 cm centered at (2 cm, 2 cm)

d) If a fourth $-10 \ \mu C$ charge is placed at (2 cm,2 cm), find the magnitude and the direction of the electrostatic force acting on it.

Problem 2 (2 marks): In the figure shown,

a) (1 mark) find the equivalent resistance in the circuit?

b) (1 mark) If the current through R_3 is 1.5 A, What is the emf of the battery?

Scratch paper