Part 1: Circle the letter of the most correct answer using a pen. Use g = 10 m/s².

Q1. Using the appropriate number of significant figures, $3.0 \times 4.00 =$

a) 12

- b) 12.0
- c) 12.00

d) 1×10^{1}

Q2. How many significant figures are in 2.0010?

a) 1

b) 2

c) 4

d) 5

Q3. Which of the following has the dimensions of acceleration?

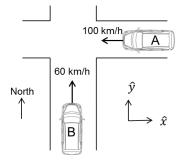
- a) x^2/vt
- b) 2vx/t
- c) $5v^{2}/x$

d) $\sqrt{2v^2/xt}$

Q4. A bee, initially moving with a velocity of $\vec{v}_0 = 2 \hat{x}$ m/s, started to accelerate with a constant acceleration of $\vec{a} = -\hat{y}$ m/s². What is it's velocity after 2 seconds?

- a) $2\hat{x} 2\hat{y}$ m/s
- b) 0 m/s
- c) $2\hat{x} + 2\hat{y}$ m/s
- d) $4\hat{x} 2\hat{y}$ m/s

Q5. A boat moves with a constant velocity of $\vec{v} = (3\hat{x} - \hat{y})$ m/s. What is its speed?


- a) 9 m/s
- b) 2 m/s
- c) 4 m/s
- d) 3.16 m/s

Q6. The direction angle θ of the vector $\vec{R} = -3\hat{x} - 2\hat{y}$ is:

- a) 33.7°
- b) 146.3°
- c) 56.3°
- d) 213.7°

Q7. In the shown figure, car A is moving at 100 km/h west and car B is moving at 60 km/h north. What is the velocity of car A relative to car B?

- a) $-100\hat{x} 60\hat{y}$ km/h
- b) $-100\hat{x} + 60\hat{y} \text{ km/h}$
- c) $100\hat{x} + 60\hat{y} \text{ km/h}$
- d) $100\hat{x} 60\hat{y} \text{ km/h}$

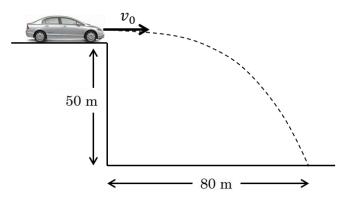
Q8. To visit a friend, you drive 3 km north, then 3 km east, and then 1 km south. Assuming the north direction is along the positive *y*-axis, your displacement vector is:

- a) $-3\hat{x} + 2\hat{y}$ km
- b) $-3\hat{x} 2\hat{y}$ km
- c) $3\hat{x} + 2\hat{y}$ km
- d) $3\hat{x} 2\hat{y}$ km

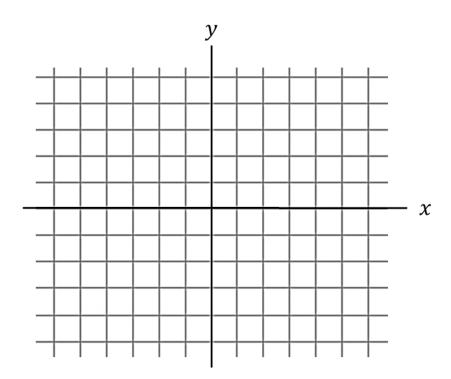
Q9. A ball is dropped from rest from the top of a building. It reaches the ground after 2 seconds. What is the height of the building?

- a) 10 m
- b) 20 m
- c) 40 m
- d) 30 m

Q10. An object is moving in one dimension with a constant acceleration. Its initial velocity is 2 m/s at the position $x_0 = 4$ m. Two seconds later, its position is x = 5 m. What is the acceleration of the object?


- a) 1.5 m/s^2
- b) 5 m/s²
- c) -1.5 m/s^2
- d) -5 m/s^2

Q11. A man walks 6 km east for 3 hours, then 4 km west for 1 hour. What is his average speed? a) 2.5 km/h b) 0.5 km/h c) 3 km/h d) 1 km/h Q12. A truck slows down from 15 m/s to 5 m/s over a 25 m distance. What is the acceleration of the truck? a) -5 m/s^2 b) -0.4 m/s^2 c) -8 m/s^2 d) -4 m/s^2 Q13. An object is thrown vertically upward with an initial speed of 35 m/s. The velocity of the object 5 s later is: a) 85 m/s down b) 15 m/s up c) 15 m/s down d) 85 m/s up Q14. A football is kicked with an initial velocity of 8 m/s at 15° above the horizontal. It lands at the same level from which it was kicked. The horizontal distance the football travels (its range) is: b) 1.7 m a) 0.4 m c) 6.4 m d) 3.2 m


End of part 1

Part 2: Solve the following two problems in the provided space. **Show all your steps** and include the appropriate units. Use $g = 10 \text{ m/s}^2$.

- Q1. (3 points) A car drives off a 50 m high cliff, horizontally, as shown. It lands 80 m away from the base of the cliff.
 - a) How long is the car in the air (its flight time)?
 - b) How fast was the car when it left the cliff (its initial velocity)?

- Q2. (3 points) Given the vectors $\vec{A} = 2\hat{x} + \hat{y}$ and $\vec{B} = 3\hat{x} 2\hat{y}$.
 - a) Draw the vectors \vec{A} , \vec{B} , $\vec{A} \vec{B}$
 - b) Calculate the magnitude and the direction of the vector $\vec{A} \vec{B}$.

