

Prince Sultan University Department of Mathematics and Physical Sciences

Math 223 Second Midterm Examination Semester I, Term 101 Saturday, January 1, 2011

Time Allowed: 100 minutes

Name:	
Student Number:	

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled.
- 7. This examination has 9 problems, some with several parts. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1,2,3,4	21	
5,6	16	
7,8,9	22	
9	15	
Total	74	

HAPPY NEW YEAR

O 1 1	/ ~		1
Question.1	(5)	points	;)

Find the area of the parallelogram determined by $\mathbf{u} = (1,-1,2)$ and $\mathbf{v} = (0,3,1)$.

Question.2 (5 points)

Let $\mathbf{v} = (4,7,-3,2)$ and $\mathbf{w} = (5,-2,8,1)$. Find the vector *x* that satisfies 5x - 2v = 2(w - 5x).

Question.3 (3 points)

Explain why the vectors $\mathbf{u}=(1,2,4)$ ans $\mathbf{v}=(5,10,20)$ are linearly dependent in \mathbb{R}^3 .

Question4 (8 points)

Let u= (u_1, u_2, u_3) and v= (v_1, v_2, v_3) . Determine whether $\langle u, v \rangle = u_1 v_1 + u_3 v_3$ is inner product on \mathbb{R}^3 . Explain your answer.

Question.5 (8 points)

a) Find parametric equation of the line passing through the points (5,-2,4) and (7,2,-4).

b) Where does the line intersect the xy plane.

Question.6 (8 points)

Check whether the set of all 2×2 matrices of the form $\begin{bmatrix} a & a+b \\ a+b & b \end{bmatrix}$ is a vector space with matrix addition and scalar multiplication.

Question.7 (7 points)

Determine whether the vectors $v_1 = (2,2,2), v_2 = (0,0,3), v_3 = (0,1,1)$ span R^3 .

Question.8 (6 points)

- a) Find the length of the vectors $\mathbf{u} = (-1,5,2)$ ans $\mathbf{v} = (2,-9)$.
- b) Find the cosine of the angle between \mathbf{u} and \mathbf{v} .

Question.9 (9 points)

Show that the following set of vectors $\begin{bmatrix} 3 & 6 \\ 3 & -6 \end{bmatrix}$, $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & -8 \\ -12 & -4 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, is a basis for M_{22} .

Question.10 (15 points)

Consider the linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\begin{cases} w_1 = x_1 - 2x_2 + 2x_3 \\ w_2 = 2x_1 + x_2 + x_3 \\ w_3 = x_1 + x_2 \end{cases}$.

a) Find the standard matrix for *T*.

b) Determine whether *T* is one to one.

c) Find the standard matrix for T^{-1} .

d) Find $T^{-1} = (w_1, w_2, w_3)$.