

Prince Sultan University

Department of Mathematics and Physical Sciences

Math 223
First Midterm Examination
Semester I, Term 101
Monday, November 8, 2010

Time Allowed:	100 minutes

Name:	
Student Number:	

Important Instructions

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled.
- 7. This examination has 9 problems, some with several parts. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1,2,3,4	22	
5,6	16	
7,8	18	
9	9	
Total	75	

:

Question.1 (5 points)

Assuming that all matrices are $n \times n$ and invertible, solve $ABC^TDBA^TC = AB^T$ for D.

Question.2 (5 points)

Let A be an $n \times n$ symmetric matrix. Show that A^2 is symmetric.

Question.3 (6 points)

Let
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 where b is a nonzero real number.

- a) Find det(A).
- b) Find $det(A^{-1})$.

Question.4 (6 points)

Suppose that the augmented matrix for a system of linear equations has been reduced by row operations to the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 4 & | & -1 \\ 0 & 1 & 0 & 2 & | & 6 \\ 0 & 0 & 1 & 3 & | & 2 \end{bmatrix}$. Solve the system.

Question.5 (6 points)

Let
$$A^{-1} = \begin{bmatrix} -2 & 7 & -1 \\ 1 & -4 & 1 \\ 4 & -13 & 2 \end{bmatrix}$$
 be the inverse of $A = \begin{bmatrix} 5 & -1 & 3 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}$. Solve $\begin{cases} 5x - y + 3z = a \\ 2x + z = b \\ 3x + 2y + z = c \end{cases}$

where a,b,c are real numbers.

Question.6 (10 points)

Consider the matrices
$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$.

a) Compute tr(AC).

b) Compute $2B^T - D^{-2}$.

Question.7 (8 points)

Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
. Assuming that $det(A) = -7$. Find a) $det(A^{-1})$.

b)
$$\det \begin{bmatrix} a & b & c \\ g & h & i \\ d & e & f \end{bmatrix}$$
.

Question.8 (10 points)

Given the matrix
$$\begin{bmatrix} 2 & 0 & 1 \\ 3 & 5 & 2 \\ -1 & 0 & 4 \end{bmatrix}$$
.

a) Find det(A) and adj(A).

b) then use them to find A^{-1} .

Question.9 (9 points)

Show that the 4×3 linear system $\begin{cases}
-x+y+z=9 \\
2x+y-z=-10 \\
3x-2z=-19 \\
-x+2y-3z=-10
\end{cases}$ has a unique solution.