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Important Instructions 

 

: 
1. You may use a scientific calculator that does not have programming or graphing 

capabilities. 

2. You may NOT borrow a calculator from anyone. 

3. You may NOT use notes or any textbook. 

4. There should be NO talking during the examination. 

5. Your exam will be taken immediately if your mobile phone is seen or heard. 

6. Looking around or making an attempt to cheat will result in your exam being 

cancelled. 

7. This examination has 9 problems, some with several parts. Make sure your paper 

has all these problems. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Problems Max points Student’s Points 

1,2,3,4 22  

5,6 16  

7,8 18  

9 9  

Total 75  



Question.1 (5 points) 

Assuming that all matrices are nn  and invertible, solve   TTT ABCDBAABC    for  

.D 

 

 

 

 

 

Question.2 (5 points) 

Let A be an nn  symmetric matrix. Show that 2A  is symmetric. 

 

 

 

 

 

 

Question.3 (6 points) 

Let 
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A  where b is a nonzero real number. 

a) Find ).det(A  

 

 

b) Find ).det( 1A  

 

 

 

Question.4 (6 points)  

Suppose that the augmented matrix for a system of linear equations has been 

reduced by row operations to the reduced row echelon form  
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Question.5 (6 points) 

Let 
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where cba ,,  are real numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question.6 (10 points) 

Consider the matrices 
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a) Compute ).(ACtr  

 

 

 

 

 

 

 

b) Compute 22 DBT . 

 

 

 

 

 

 

 

 

 

 

 

 



Question.7 (8 points) 

Let 
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b) .det
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Question.8 (10 points) 

Given the matrix  
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b) then use them to  find .1A  

 

 

 

 

 

 

 

 

 

 

 

 



Question.9 (9 points) 

Show that the 34  linear system 
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has a unique solution. 

 

 

 

 

 

 

 

 
 


