

Prince Sultan University Department of Mathematics and Physical Sciences

> Math 215 Second Midterm Exam Semester I, Term 131 Thusday, December 23, 2013

Time Allowed: 80 minutes

Name:

Student Number:

Grading Policy:

Questions	Q.1	Q.2	Q.3	Q.4	Q.5	Q.6	Q.7	Total
Student's Mark								
Maximum Mark	4	5	5	7	4	6	9	40

Statement of Ethics:

I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature:

Q.1 (4 points) Find
$$\left\| proj_{\overrightarrow{a}} \stackrel{\rightarrow}{u} \right\|$$
 if $\overrightarrow{u} = (3, -2, 6)$ and $\overrightarrow{a} = (1, 2, -7)$.

Q.2 (5 points) Find the volume of the parallelepiped with sides $\vec{u} = (3,1,2)$, $\vec{v} = (4,5,1)$, $\vec{w} = (1,2,4)$.

Q.3 (5 points) Find the equation of the plane that is perpendicular to the plane 8x - 2y + 6z = 1 and passes through the points (-1,2,5) and (2,1,4).

Q.4 (7 points) Consider the linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by the equations $\begin{cases}
w_1 = x + 4y - z \\
w_2 = 2x + 7y + z \\
w_3 = x + 3y
\end{cases}$

- a) Determine whether T is one to one.
- b) If so, find the standard matrix for the inverse operator T^{-1} .
- c) Find $T^{-1}(w_1, w_2, w_3)$.

Q.5 (4 points) Show that the set of vectors $\{e^x, xe^x, x^2e^x\}$ is linearly independent.

Q.6 (6 points) Find the coordinate vector of $\vec{w} = (1,1)$ relative to the basis $S = \left\{ \vec{u_1}, \vec{u_2} \right\}$ for R^2 where $\vec{u_1} = (2,-4)$ and $\vec{u_2} = (3,8)$.

Q.7 (9 points) Determine the dimension of and a basis for the solution space of the system $\begin{cases}
x-3y+z=0\\2x-6y+2z=0\\3x-9y+3z=0
\end{cases}$