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Q.1 (4 points) Find the second derivative )(y  of the function .)sin(
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Q.2 (3 points) Write down the partial fraction decomposition of the function 
)1()1(
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the determination of the coefficients. 

 

 

 

 

 

Q.3 (5 points) Find the area of the shaded region: 
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Q.4 (4 points) Use the method of the cylindrical shells to find the volume generated by rotating the 

region bounded by the curves 2xy   and 22 xy   about .1x Set up the integral and do not 

evaluate it. 

 

 

 

 

 

 

Q.5 ((a): 4 points, (b): 6 points, (c): 4 points, (d): 4 points) Evaluate the integrals: 
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      (Hint: Use integration by parts). 
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Q.6 ((a):5 points, (b): 4 points) Determine whether the integrals are convergent or divergent. If they 

converge evaluate them: 
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Q.7 (5 points) Find the exact length of the curve ,)4(2 2
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Q.8 ((a): 5 points, (b): 6 points, (c): 4 points, (d): 5 points) Test the series for convergence and 

divergence: 
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Q.9 (5 points) Determine whether the series 
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Q.10 (7 points) Find the radius and interval of convergence of the series 
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