

Prince Sultan University Department of Mathematics and Physical Sciences

Math 113 Final Examination Semester II, Term 132 Saturday, May 24, 2014

Time Allowed: 120 minutes

Name:		
Student Number:		
Instructor's Name:	Nabil Mlaiki,	Jehad Alzabut
Section:	$222 \qquad 223$	$220 \qquad 221$

Statement of Ethics:

I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Signature:

A deal: Calculators are allowed but you have to show the details of your all work.

Total/80:

Total/40:

Problem A

1. (6 points) Find The derivative of the function $f(x) = \int_{\sqrt{x}}^{x} \frac{e^{t}}{t} dt$.

2. (7 points) Find the area bounded by the curves $y = x^2$ and $y = 4x - x^2$.

3. (7 points) Find the length of the curve $y = 1 + 6x^{3/2}$, $0 \le x \le 1$.

Problem B: (6+7 points) Evaluate the integrals:

1.
$$\int_{0}^{1} (x^2 + 1)e^{-x} dx$$

$$2. \quad \int \frac{x-9}{(x+5)(x-2)} dx$$

Problem C: (7 points) Find the volume of the solid obtained by rotating the region bounded by the curves $y = e^{-x}$, y = 1, x = 2 about y = 2.

Problem D: (6+6 points) Determine whether the series is absolutely convergent, conditionally convergent or divergent:

$$1. \quad \sum_{n=2}^{\infty} \left(\frac{-2n}{n+1} \right)^{5n}$$

$$2. \quad \sum_{n=1}^{\infty} \frac{10^n}{(n+1)4^{2n+1}}$$

Problem E: (10 points) Find the radius of convergence and interval of convergence of the series

$$\sum_{n=1}^{\infty} \frac{3^n (x+4)^n}{\sqrt{n}}$$

Problem F: (4.5 points each: 18 points) Test the series for convergence or divergence :

$$1. \quad \sum_{n=1}^{\infty} \frac{n!}{e^{n^2}}$$

$$2. \quad \sum_{n=1}^{\infty} \left(\frac{1}{n^3} + \frac{1}{3^n} \right)$$

$$3. \quad \sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$$

4.
$$\sum_{n=1}^{\infty} (-1)^{n-1} e^{\frac{2}{n}}$$