

Prince Sultan University MATH 111 Major Exam II Semester I, Term 161 Monday, December 19, 2016

Time Allowed: 90 minutes

Student Name:	
Student ID #:	
Teacher's Name:	Section #:
Serial #:	

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. Your exam will be taken immediately if your mobile phone is seen or heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled.
- 7. You have to show your work in details in all problems.
- 8. This examination has 12 problems, some with several parts. Make sure your paper has all these problems.

Page #	Max points	Student's Points
1	16	
2,3,4,5	24	
6,7,8,9	20	
10,11,12	20	
Total	80	

Q1. (16 points) Compute y'. Simplify where possible.

(Note: Show your work in details)

(a)
$$y = \frac{5}{\sqrt[3]{\tan x + 2^x}}$$

(b)
$$y = \tan^{-1}(\sin^{-1}(\sqrt{x}))$$

(c)
$$\sin(xy) = \frac{y}{x}$$

(d)
$$y = (\cos x)^x$$

(e)
$$y = \ln\left(\coth\left(\frac{1}{x}\right)\right)$$

Q2. (5 points) Find an equation of the **normal** line to the curve $y = (2+5x)e^{-x}$ at the point (0,2).

Q3. (6 points) At what point (x, y) on the curve $y = [\ln(x+4)]^2$ is the tangent horizontal?

Q4. (6 points) The volume of a cube is increasing at a rate of $8 \text{ cm}^3/\text{min}$. How fast is the surface area increasing when the length of an edge is 24 cm? (Note: Show your work in details)

Q5. (7 points) A paper cup has the shape of a cone with height 10 cm and radius 3 cm (at the top). If water is poured into the cup at a rate of 2 cm³/sec, <u>how fast</u> is the water level rising when the water is 5 cm deep? (Note1: Volume of cone is: $V = \frac{1}{3}\pi r^2 h$) (Note2: Show your work in details).

Q6. (5 points) Suppose g is a differentiable function such that $g(x) + x \sin(g(x)) = x^2$, find g'(0).

Q7. (4 points) Find the limit: $\lim_{x\to 0} \frac{\tan 2x}{x^2 - 8x}$.

(Note: Show your work in details)

Q8. (5 points) Find the critical numbers of the function: f(x) = |2x+1|. (Note: Show your work in details)

Q9. (6 points) (a) Prove the identity $\frac{1 + \tanh x}{1 - \tanh x} = e^{2x}$.

(Note: Show your work in details)

(b) Show that
$$\frac{d}{dx} \sqrt[4]{\frac{1+\tanh x}{1-\tanh x}} = \frac{e^{x/2}}{2}.$$

(Note: Show your work in details)

Q10. (6 points) Find the absolute maximum and absolute minimum values of the function $f(x) = (x^2 - 1)^3$ on the interval [-2, 2]. (Note: Show your work in details)

Q11. (7 points) (a) Show that the equation $x^3 + e^{2x} = 0$ has a real zero between -1 and 0.

(b) Use Rolle's Theorem to show that the equation $x^3 + e^{2x} = 0$ has exactly one real root between -1 and 0.

Q12. (7 points) <u>Verify</u> that the function $f(x) = \frac{x}{x+1}$ satisfies the hypotheses of the Mean Value Theorem on the interval [1, 4]. Then <u>find</u> all numbers *c* that satisfy the conclusion of the Mean Value Theorem.