

Prince Sultan University Orientation Mathematics Program Math111 _{Major I}

Spring Semester 092 Saturday, March 27, 2010

Time Allowed: 90 minutes

Student Name:

Student ID #:

Important Instructions:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may **NOT borrow** a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be **NO talking** during the examination.
- 5. Your exam will be taken **immediately** if your mobile phone heard.
- 6. Looking around or making an attempt to cheat will result in your exam being cancelled.
- 7. Provide an **organized complete** solution for each Question.
- 8. This examination has 8 problems. Make sure your paper has all these problems.

Problems	Max. points	Student's Points
1	30	
2,3	21	
4,5	25	
6,7,8	24	
Total	100	

Q.1 (30 pts) Answer the following quick questions:

	Questions	Answers
1.(3pts)	Let $f(x) = 2x + 1$ and $h(x) = 2x^2 + 4x + 1$. Find a function g such that $(f \circ g)(x) = h(x)$.	
2.(2pts)	Does the graph define a function?	
3.(3pts)	Classify $f(x) = 2x^3 + x $ as even, odd or neither.	
4.(3pts)	Let $f(x) = 2\sqrt{x-1}$, $g(x) = \sqrt{x-1}$. Find $f - g$.	
5.(4pts)	For $f(x) = -4\sin(\frac{x}{3} + 2\pi)$. Find amplitude and period.	
6.(3pts)	Given that $f(x) = \begin{cases} x+1, x \le 1 \\ x-1, x > 1 \end{cases}$. Find $\lim_{x \to 1^+} f(x)$.	
7. (2.5pts)	Evaluate $\lim_{x \to -1} (x^3 + x^2 + x)^{101}$.	
8. (2.5pts)	Evaluate $\lim_{x \to \infty} (1 + 2x - 3x^5).$	
9.(4pts)	Suppose that f and g are continuous functions such that $f(2) = 1$ and $\lim_{x \to 2} [f(x) + 4g(x)] = 13$. Find $g(2)$ and $\lim_{x \to 2} g(x)$.	
10.(3pts)	Find the discontinuities, if any, of $f(x) = \frac{1}{1 - 2\sin x}$.	

d) Write the equations of the vertical and horizontal asymptotes of f.

Q.3 (9 pts) Let $f(x) = x^2$ and $g(x) = \sqrt{1-x}$.

- e) State the domain of $f \circ g$.
- f) Find $\frac{f}{g}$.
- g) Find g(5t+2).

Q.4 (17 pts) Use the accompanying graph of f, $x \ge -3$, to answer the following questions:

- d) Evaluate $\lim_{x\to\infty} f(x)$.
- e) Where does x approach as $f(x) \rightarrow \infty$.
- f) Find f(2).

Q.5 (8 pts) Evaluate the limits:

a) $\lim_{x\to 3}\frac{x}{x-3}.$

b)
$$\lim_{x \to \infty} \frac{\sqrt{5x^2 - 2}}{x + 3}$$

Q.6 (12 pts) Find the limits:

a)
$$\lim_{x\to\infty} \frac{7-6x^5}{x^2+3}$$
.

b)
$$\lim_{x\to 6} \frac{y+6}{y^2-36}$$
.

c) $\lim_{x\to 0} \frac{\sin 6x}{\sin 8x}.$

.

Q.7 (7 pts) Find the value of the constant k, if possible, that makes the function $f(x) = \begin{cases} kx^2, x \le 2\\ 2x+k, x > 2 \end{cases}$ continuous everywhere.

Q.8 (5 pts) Use the Squeezing Theorem to evaluate that $\lim_{x\to 0} x\cos(\frac{1}{x})$.