Prince Sultan University

Deanship of Educational Services

Department of Mathematics and General Sciences

COURSE DETAILS:

Calculus	I MATH 111	Final EXAM
Semester:	First Semester Term 181	
Date:	Saturday December 15, 2018	
Time Allowed:	3 Hours	

STUDENT DETAILS:

Student Name		
Student ID #		
Section #	Attendance serial #	
Instructor's Name		

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Total	Total
Questions							
Marks	16	16	20	14	14	80	40

Q.1 (2 points) Discuss the continuity of the function: $g(x) = \frac{\sqrt[3]{x^2 - 9}}{5 - x^2}$

Q.3 (4 points) Find the points on the graph of $y^3 - x = 0$ where the tangent line has slope $\frac{1}{3}$.

Q.4 (5 points) Determine the intervals in which the function $f(x) = (x^2 - 1)^{10}$ is increasing or decreasing.

Q.5 (5 points) Find the absolute maximum and absolute minimum values of the function $f(x) = x^4 e^{-x}$ on the interval [-1,5].

(a) (3 points)
$$\lim_{x \to 1} \frac{1 - x + \ln x}{1 + \cos(\pi x)}$$

(b) (3 points)
$$\lim_{x \to \infty} \frac{e^{2x} - e^{-2x}}{\ln(x+1)}$$

(c) (3 points)
$$\lim_{x \to 0^+} (\frac{1}{x} - \frac{1}{x^3})$$

(d) (3 points)
$$\lim_{x \to 0^-} x e^{-\frac{1}{x}}$$

(e) (4 points) $\lim_{x \to 0^+} (1 + \sin 3x)^{\frac{1}{x}}$

Q.7 (12 points) Calculate y' (a) (3 points) $y = \sqrt[3]{\csc(11x)} + \ln 7$

(b) (3 points)
$$y = \ln(4^{\sin x} + \sin^{-1}(5x^3))$$

(c) (3 points)
$$y = \frac{\sinh(7x)}{(5x^2+9)}$$

(d) (3 points)
$$\ln(8y^2) = 12 + y^3 e^{-2x}$$

Q.8 (4 points) If
$$y = \ln\left(\frac{e^{-3}}{e^{2x} + e^{-2x}}\right)$$
 show that $y' = -2 \tanh(2x)$

Q9 (4 points) Consider a function f(x) for which the graph of <u>its derivative</u> f'(x) is shown below:

- a. (2 points) Find intervals in which f(x) is increasing.
- b. (2 points) Find the interval(s) in which f(x) is concave upward.

Q.10 (14 points) Let $f(x) = e^{2x} - e^{x}$

(a) (2 points) Find the domain of f and the intercepts (if any).

(b) (2 points) Determine the vertical and horizontal asymptotes (if any).

(c) (3 points) Find the critical numbers and the local maximum and/or local minimum points, if any.

(d) (4 points) Find the intervals on which f are concave up and/or concave down and the inflection point(s) if any.

(e) (3 points) Sketch the graph of f showing on the graph all significant features

Q.11 (6 points) A total area of 2400 m^2 is to be enclosed in two pens, as illustrated. The walls are to be constructed of brick, and the inner wall divides the field into two equal parts. Find the dimensions x and y that minimize the cost of construction.

Q.12 (4 points) A ladder 10 m long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 0.5 m/s, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 m from the wall?

Q.13 (4 points) Let $f(x) = \frac{(x-1)^3}{x^2}$ and $f'(x) = 1 - \frac{3}{x^2} + \frac{2}{x^3}$ be given, find the coordinate of inflection point(s), (if any).