

Prince Sultan University Department of Mathematical Sciences MATH 221 – Major Examination 02 January 2008

Time allowed: 120 minutes		Maximum points: 100 points	
I.D #:	Name:	Sign.:	

Q1 [15 points]: Use the *bisection method* to find *solutions* accurate to within 10^{-2} for $x^3-7x^2+14x-16=0$ on each interval.

(a). **[0, 1]** (b). **[3.2, 4]**

Q2 [12 points]: Apply the *Newton-Raphson's method* to approximate a root of the equation $x^3+4x^2-10 = 0$ correct to the eight decimal places; use initial approximation $p_0 = 1.5$.

Q3 [14 points]: Let $f(x) = -x^3 - \cos x$. Take $p_0 = -1$ and $p_1 = 0$. Find p_3 using (a). Secant method (b). Method of false position **Q4** [15 points]: Let $f(x) = \cos x$. Take $x_0 = 0$, $x_1 = 0.6$ and $x_2 = 0.9$. Construct the *Lagrange interpolating polynomials* of *degree at the most one* and *at the most two* to approximate f(0.45); also find the *absolute errors*.

Q5 [15 points]: Develop the divided-difference table to compute the fourth divided difference corresponding to the following data:

x	1	1.3	1.6	1.9	2.2
f(x)	0.7651977	0.6200860	0.4554022	0.2818186	0.1103623

Then construct the Lagrange interpolation polynomial $P_4(x)$ to approximate f(1.5).

Q6 [15 points]: (a). State the following formulas to approximate $f'(x_0)$: Forward-difference formula; Backward-difference formula; Three-point formulas; Five-point formulas.

(b). Apply appropriate five-point formula with h= 0.1 to approximate f'(2.0) for which the data is provided as below:

x	1.8	1.9	2.0	2.1	2.2
f(x)	10.889365	12.703199	14.778112	17.148957	19.855030

Q7 [14 points]: State the *Trapezoidal* and *Simpson' rules* for *numerical integration*. Give a comparison between the two rules by approximating

$$\int_{0}^{2} f(x) dx \quad \text{for } f(x) = x^{4}, \ x^{-1}, \ \sin x, \ e^{x}.$$

(Take care of yourself!)