

Prince Sultan University Department of Mathematical Sciences MATH 221 – Major Exam 1 03 November 2007

Time allowed: 120 minutes

Maximum points: 100 points

Q1 [12 points]:

- i. Find the second and third Taylor polynomials $P_2(x)$ and $P_3(x)$ for $f(x) = \cos x$ about $x_0 = 0$.
- ii. Approximate cos 0.01 using $P_2(x)$ and $P_3(x)$.
- iii. **Compare** the above two *approximation techniques*.

Q2 [14 points]:

Q3 [12 points]:

- *i.* Give a *comparision* between *absolute error* and *relative error* for an *approximation* p^* to p.
- *ii.* If $fl(y) = 0.d_1d_2...d_kd_{k+1} \times 10^n$ is *k*-digit decimal floating-point representation of the number $y = 0.d_1d_2d_3...\times 10^n$ by using the chopping, then show that the relative error is $\leq 10^{-k+1}$.

Q4 [18 points]:

- i. Use the Intermediate Value Theorem to confirm the existence of a root of the equation $x^3+4x^2-10=0$ in the interval [1,2].
- ii. **Apply** the *Bisection Algorithm* to **find an approximation** of the existing *root correct to at least four significant digits.*
- iii. Justify the claim that the Bisection Algorithm converges with the rate $O(1/2^n)$.

Q5 [14 points]:

- i. Using the *pseudocode* write an *algorithm* for the *Newton-Raphson's method* to *find* an *approximate solution* of f(x) = 0 with given *initial approximation* p_0 .
- ii. Apply the above method to find a *zero* of the *function* $f(x) = \cos x x$ in the *interval* $[0,\pi/2]$ accurate to ten decimal places; use the *initial approximation* $p_0=\pi/4$.

Q6 [15 points]:

- i. Apply the Secant method to find a solution of $\cos x x = 0$, using the initial approximations as $p_0=0.5$ and $p_1=\pi/4$.
- ii. Apply the method of False Position to find a solution of $\cos x x = 0$, using the initial approximations p_0 and p_1 same as in Part i.
- iii. **Compare** the *method of False Position* with the *Secant method*.

Q7 [15 points]:

- i. **Define** *linearly convergent* and *quadratically convergent sequences*.
- ii. **Give an example to verify** that a *quadratically convergent sequence converges* more *rapidly* than a *linearly convergent sequence*.
- iii. Show that the *Newton-Raphson's method converges quadratically*.

(Take care of yourself!)