

Time allowed: 120 minutes		Maximum points: 100 points
I.D #:	Name:	Sign.:

Q1 [12 points]: Find the *third Taylor polynomial* $P_3(x)$ for $f(x) = e^x \cos x$ about $x_0 = 0$. Use this polynomial to approximate f(0.5) and also compute the error/s involved.

Q2 [12 points]: Represent the decimal number 27.56640625 in the *binary floating-point* system. Also find its next smallest and next largest machine numbers.

Q3 [12 points]: Suppose that x = 5/7 and y = 1/3 and that five-digit chopping is used for arithmetic calculations involving x and y. *Perform the following computer-type operations* on the floationg-point representations $fl(x) = 0.71428 \times 10^{\circ}$ and $fl(y) = 0.33333 \times 10^{\circ}$: $x \oplus y$, $x \otimes y$, $x \otimes y$, $x \otimes y$. Also find *absolute* and *relative errors*.

Q4 [14 points]: A root of the equation $x^3+4x^2-10 = 0$ correct to nine decimal places is 1.365230013. Use the *Bisection Method* to find an approximate *root* of the *equation* in the *interval* [1,2] correct to at least four significant digits. Also discuss convergence of this method.

Q5 [12 points]: Explain the fact that every fixed-point problem corresponds to a root-finding problem and vice a versa. Apply the *fixed-point iteration* technique on $g(x) = x - (x^3+4x^2-10)/(3x^2+8x)$ to approximate a root of the equation $x^3+4x^2-10 = 0$ correct to the eight decimal places; take initial approximation $p_0 = 1.5$.

Q6 [12 points]: Apply the Newton-Raphson's method to find a zero of the function $f(x) = \cos x - x$ in the interval $[0,\pi/2]$ accurate to ten decimal places; use the initial approximation $p_0=\pi/4$.

Q7 [14 points]: Apply the Secant method to find a solution of $\cos x - x = 0$, using the initial approximations as $p_0=0.5$ and $p_1=\pi/4$. Also give a comparison between secant method and the Newton-Raphson's method.

Q8 [12 points]: Let $P_3(x)$ denote the *third Lagrange interpolating polynomial* for the data (0,0), (0.5, y), (1,3), and (2,2). Find the value of y if the coefficient of x^3 in $P_3(x)$ is 6.