1) a) Does $lim_{(x,y)\to(0,0)} \frac{y^2 sin^2 x}{x^4 + y^4}$ exist? Why?

b) Find the absolute maximum and minimum values of $f(x, y) = x^4 + y^4 - 4xy + 2$ on the set $D = \{(x, y): 0 \le x \le 3, 0 \le y \le 2\}$.

2) a) Evaluate the integral $\int_0^1 \int_x^1 e^{\frac{x}{y}} dy dx$. b) Evaluate the integral $\int_0^1 \int_y^{\sqrt{2-y^2}} (x+y) dx dy$ in two different ways (Once using rectangular coordinates and once using polar coordinates).

- 3) a) If u = (2,0,3) and W is the subspace of R^3 of dimension 2 which is generated by the vectors $v_1 = (1,2,0)$ and $v_2 = (1,1,1,)$, then find $Proj_W u$ and $Proj_W r u$.
 - b) Let $p_1 = 1 x + x^2$ and $p_2 = 2 + 2x x^2$ be two vectors in the space P_2 of all polynomials with real coefficients and degree less than or equal to 2. On P_2 define the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$, $f, g \in P_2$. Find $||p_1||$ and $d(p_1, p_2)$.

4) a) Find the distance between the point P(1,1,1) and the plane passing through the points P₁(1,-1,1), P₂(2,-1,0), P₃(-1,2,4).
b) Find a basis for the kernel of the linear operator T: R³ → R³ defined by T(x, y, z) = (x - 2y + 3z, -3x + 6y + 9z, -2x + 4y - 6z). Also find T(1,1,1) and determine whether T is one to one or onto.

5) Find a matrix *P* that orthogonally diagonalizes $A = \begin{bmatrix} 6 & 2\sqrt{3} \\ 2\sqrt{3} & 7 \end{bmatrix}$ and determine $P^{-1}AP$. Then use the results to calculate A^5 .