Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

Calculus I	MATH 111	MAJOR EXAM II		
Semester:	Fall Semester Term 181			
Date:	Wednesday November 28, 2018			
Time Allowed:	90 minutes			

STUDENT DETAILS:

Student Name:		
Student ID Number:		
Section #:	Attendance Serial #:	
Instructor's Name:		

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Total	Total
Questions						
Marks	14	16	15	15	60	20

Q1 (9 point) Find
$$\frac{dy}{dx}$$

a. $y = \sqrt{\ln x + \sec(e^{7x})}$

b.
$$y = (\cosh x)^{x^7}$$

c.
$$y = 8^x \tan^{-1}(7x)$$

Q2. [5 pts] Find the equation of the tangent line to the curve: $y = 2^x - 3 \tanh x - x \ln 2$, at x = 0.

Q3 [5 pts] if $x^2 + xy + y^3 = 1$, find the value of y'' at the point where x = 1.

Q4 [3 pts] Evaluate:
$$\lim_{x \to \infty} \frac{2 \cosh x}{3e^x}$$

Q5 [4 pts] Let
$$g(x) = f(x)\cos x$$
, $f(\frac{\pi}{3}) = 5$ and $f'(\frac{\pi}{3}) = 7$ Find $g'(\frac{\pi}{3})$.

Q6 [4 pts] Suppose that F(x) = f(xg(x)) and g(3) = 2, g'(3) = 5, f'(3) = 7 and f'(6) = 2. Find F'(3).

Q7. [5 pts] Let
$$y = \frac{\sin^4(x) \cdot \sqrt[5]{7x+1}}{\sqrt{2x-1} \cdot (3x^2+8)^4}$$
. Use logarithmic differentiation to find $\frac{dy}{dx}$

Q8. [6 pts] Find the critical numbers of each of the following functions: (Show your work in details) a. $f(x) = 5x + 3x^{\frac{2}{3}}$

b.
$$f(x) = \ln(x^2 + x + 1)$$

Q9. [4 pts] Verify that the function $f(x) = x + \frac{1}{x}$ satisfies the hypotheses of the **Rolle's Theorem** on the interval $\left[\frac{1}{2}, 2\right]$. Then find all numbers **<u>c</u>** that satisfy the conclusion of the Rolle's Theorem.

Q10. [6 pts] At noon, ship A is 50 km north of ship B. Ship A is sailing east at 24 km/h and ship B is sailing south at 20 km/h. how fast is the distance between the ships changing at 2:00 pm?

Q11. [4 pts] A particle is moving along a hyperbola xy = 10. As it reaches the point (2,5), the y-coordinate s decreasing at a rate of 7cm/s, how fast is the x-coordinate of the point changing at that instant?

Q12. [5 pts] Find the Absolute minimum value of the function $f(x) = e^{x^3-3x}$ on the interval [0,2].