Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

Calculus I	MATH 111	MAJOR EXAM II
Semester:	Spring Semester Term 172	
Date:	Sunday April 15, 2018	
Time Allowed:	90 minutes	

STUDENT DETAILS:

Student Name:	
Student ID Number:	
Section:	
Instructor's Name:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Total	Total
Questions						
Marks	16	16	18	10	60	20

Q1. [5 pts] Find the equation of the normal line to the curve $y = \frac{3}{x} - \frac{2}{\sqrt[3]{x}} + 2\sqrt{x}$ at x = 1.

Q2. [5 pts] If $\tan(x+y) + \csc xy = x-9$, find $\frac{dy}{dx}$.

(Show your work in details)

Q3. [4 pts] Prove the identity $\operatorname{coth}^2 x - 1 = \operatorname{csch}^2 x$.

Q4. [20 pts] Find the derivative of each of the following functions a. $y = \arctan(\sqrt{3x})$

b.
$$y = (2 - 3\log_2 x)(e^{2x} - \cos x)$$

c.
$$y = (\arcsin(\sqrt{x}))^6$$

d.
$$y = (\frac{9x+5}{3x^2-7x})^{10}$$

e.
$$y = (\ln x)^{\cosh x}$$

Q5. [5 pts] Find the absolute maximum and absolute minimum values of

 $f(x) = -2x + \sin^{-1} x$ on [-1,1].

Q6. [4 pts] Show that the equation $x^3 + e^x = 0$ has exactly one root.

Q7. [6 pts] Verify that the function $f(x) = x^3 - 3x + 2$ satisfies the hypotheses of the **Mean Value Theorem** on the interval [-2,2]. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem. Q8. [5 pts] Two cars start moving from the same point. One travels north at 460 km/h and the other travels east at 90 km/h. At what rate is the distance between the cars increasing 3 hours later?

Q9. [6 pts] Find the critical numbers of the function $f(x) = x^{3/4} - 2x^{1/4}$.