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 You may use a scientific calculator that does not have programming or graphing capabilities. NO 

borrowing calculators. 

 NO talking or looking around during the examination. 

 NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately. 

 Show all your work and be organized. 

 You may use the back of the pages for extra space, but be sure to indicate that on the page with the 

problem. 



Q1. [7 pts]  Let   1 ln( 2)f x x     . 

a) (2 point) Find the domain of  f x  

 
 

 

b) (5 points) Find the inverse of  f x . Sketch the graph of  1f x
and its asymptote. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q2. [9 pts]  Find the domain of the following functions: 
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Q3. [4 pts]   Let  
3

f x
x

  and 
1

( )
2

x
g x

x





find ( )g f x and it’s domain. 

 

 

 

 

 

 

 

 

Q4. [2 pts]   The following limit 
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represents the derivative of some function 

f at some numbera . State the function f  and the numbera .  

 

 

 

 

 

Q5. [2 pts]   If an equation of the tangent line to the curve  y f x at the point where 

5a   is 7 15,y x   find  5f and  5 .f   

 

 

 

 

Q6. [4 pts]   Find the values of the constants a  and b  that makes the function f  defined 
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 , is continuous everywhere. 

 

 
 

 

 

 

 
 
 
 

 



Q7. [2 pts]   If 
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Q8. [15 pts]  Find each of the following limits, if it exists:         [Note: Do not use L’Hospital’s Rule] 
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Q9. [2 pts] Use the definition of continuity and properties of limits to show that the function
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Q10. [4 pts]   Let  
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Use the definition of the derivative to find  0 .f   

 

 

 

 
 
 

 

 
 

 

 

 

 

Q11. [9 pts] Find the horizontal and vertical asymptotes of each curve: 

a. (4 points) 
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b. (5 points) 
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