Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

Calculus I	MATH 111	MAJOR EXAM I		
Semester:	Fall Semester Term 181			
Date:	Monday, October 22, 2018			
Time Allowed:	90 minutes			

STUDENT DETAILS:

Student Name:		
Student ID Number:		
Section #:	Attendance Serial #:	
Instructor's Name:		

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Total	Total
Questions						
Marks	16	17	13	14	60	20

Q1. [3 pts] Find the domain of $f(x) = \frac{\sqrt{x+3}}{2-x}$.

Q2. [5 pts] Let $f(x) = \ln(e^{-x} - 4)$ (a) (3 points) Find the domain of f(x).

(b) (2 points) Find the inverse of f(x).

Q3. [4 pts] Find the vertical and horizontal asymptotes of the function: $f(x) = \frac{17 + x^2}{45x - 5x^3}$

Q4. [4 pts] For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx+7 & \text{for } x \le 2\\ cx^2-3 & \text{for } x > 2 \end{cases}$$

Q5. [17 pts] Find each of the following limits, if it exists:

i.
$$\lim_{x \to 5} \left(\frac{3x}{x-5} - \frac{15}{x-5} \right)$$

ii.
$$\lim_{x \to 6^-} \frac{x^2 - 6x}{x^2 - 12x + 36}$$

iii.
$$\lim_{x \to 0} \frac{\sqrt{x+7} - \sqrt{7}}{x}$$

iv.
$$\lim_{x \to -\infty} \frac{\sqrt{9x^2 + 7}}{2x - 9}$$

v.
$$\lim_{x \to 0^+} \frac{1}{2 + e^{\frac{1}{x}}}$$

vi.
$$\lim_{x \to 0} x^2 \sin \frac{5}{2x}$$

Q6. [4 pts] Let $f(x) = 9 - 5x^2$. Use the definition of the derivative to find f'(2).

Q7. [4 pts] Use the definition of the derivative to show that the function f(x) = |x-3| is not differentiable at x = 3.

Q8. [5 pts] Let f be the function given by the graph:

Determine the value(s) x with the reason for each value where the function is not differentiable

Q9. [4 pts] Find the derivative of each of the following functions: a. $y = \sqrt{x} (x^3 - 14)$

b.
$$y = \sqrt[3]{x} + \frac{2}{\sqrt[4]{x}} - 23e^x$$

Q10. [5 pts] Find an equation of the normal line to the curve $f(x) = \frac{1-9x^2}{27x^3}$ at $x = \frac{1}{3}$.

Q11. [5 pts] For what values x does the graph of $f(x) = \frac{x^2}{3x+6}$ have a horizontal tangent?