Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

Calculus I	MATH 111	MAJOR EXAM I
Semester:	Spring Semester Term 172	
Date:	Sunday March 04, 2018	
Time Allowed:	90 minutes	

STUDENT DETAILS:

Student Name:		
Student ID Number:		
Section Number:		Serial Attendance Number:
Instructor's Name:		

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Total	Total
Questions	1,2,3,4	5	6,7,8	9,10		
Marks						
	17	18	11	14	60	20

Q1. [3 points] Find the domain of the function: $f(x) = \frac{\sqrt{x^2 + 4} - \sqrt{1 - x}}{x}$ in the interval notation

Q2. [4 points] Let
$$f(x) = \frac{1}{1-x}$$
 and $g(x) = \sqrt{x}$ Find the domain of $f \circ g$.

Q3. [2+4=6 points] Let $f(x) = \frac{2x^2 + 2}{x^2 + x - 2}$

(Show your work in details)

a. Determine where is the function f(x) continuous?

b. Find the horizontal and vertical asymptotes for the function f(x).

Q4. [4 points] Sketch a graph of a function f(x) that satisfies the following conditions:

- f(x) is continuous at x = 2 but not differentiable at x = 2, i.
- ii. f(x) has a vertical asymptote x = -2, and
- iii. f(x) has a horizontal asymptote y = 3

Q5. [3+3+4+4+4=18 points] Evaluate the limit: a. $\lim_{x \to 6^+} \frac{-2x}{6-x}$

a.
$$\lim_{x \to 6^+} \frac{-2x}{6-x}$$

b.
$$\lim_{x \to 3^{-}} \frac{|x - 3|}{3 - |x|}$$

c.
$$\lim_{x \to -2} \frac{x^3 - 4x}{x^2 - x - 6}$$

d.
$$\lim_{x \to \infty} \frac{2x^3 - 2x^2 + 4x - 1}{8 - 5x + 3x^2 - 3x^3}$$

e.
$$\lim_{x\to\infty} \left[\ln(2x+5) - \ln(x-7) \right]$$

(Show your work in details)

Q6. [3 points] Use the Squeeze Theorem to find: $\lim_{x\to\infty} e^{-x^2} \sin(x^2)$

Q7. [4 points] Use the Intermediate Value Theorem to show that there is a root of the equation $x^2 - \cos(\pi x) = 4$ in the interval (2,3). (Show your work in details)

to find $\frac{f(4) + \lim_{x \to 2} f(x)}{1 + f(2)} =$

Q9. [4+3=7 points] Let $f(x) = \sqrt{5-3x}$ be given

i. Use the definition of derivative to find f'(a) for the function.

ii. Find the equation of the tangent line to curve f(x) at $x = \frac{1}{3}$.

Q10. [7 points] Let f be the function defined by $f(x) = \begin{cases} ax+10 & \text{if } x \le -2 \\ b|x| & \text{if } -2 < x \le 2 \\ a(x-2)^2 + 6 & \text{if } x > 2 \end{cases}$

Find the values of the constants a and b that makes continuous on $(-\infty,\infty)$