Prince Sultan University

Deanship of Educational Services Department of Mathematics and General Sciences

COURSE DETAILS:

	Calculus I	MATH 111		FINAL EXAM					
Semester:	Fall Semester Term 191								
Date:	Saturday, December 14 th , 2019								
Time Allowed:	180 minutes								
Instructor:	Dr. Nabil Mlaiki	Dr. Aiman Mukheimer		Prof. Thabet Abdeljawad	Prof. Wasfi Shatanawi				
Section Number:	537 (09:00-9:50)	529 (08:00-8:50)	533 (11:00-11:50)	535 (01:00-01:50)	531 (10:00-10:50)				

STUDENT DETAILS:

Student Name:	
Student ID:	

INSTRUCTIONS:

- You may use a scientific calculator that does not have programming or graphing capabilities. NO borrowing calculators.
- NO talking or looking around during the examination.
- NO mobile phones. If your mobile is seen or heard, your exam will be taken immediately.
- Show all your work and be organized.
- You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.

GRADING:

	Page 1	Page 2	Page 3	Page 4	Page 5	Total	Total
Marks	20	16	14	14	16	80	40

Q1) (20 points; 5 points each) Find the limit.

a)
$$\lim_{x \to 1} \frac{x^3 - 2x + 1}{x^3 - 1}$$

b)
$$\lim_{x \to \infty} \frac{(\ln x)^2}{x}$$

c)
$$\lim_{x \to 1^+} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$

d) $\lim_{x\to 0^+} (\tan(2x))^x$

Q2) (8 points) Verify that the function $f(x) = 2x^2 - 4x + 5$ satisfies the three hypotheses of Roller's Theorem on the interval [-1, 3]. Then find all numbers *c* that satisfies the conclusion of Roller's Theorem.

Q3) (8 points) Find the critical numbers of the function $f(x) = x^4(x-1)^3$

Q4) (6 points) Find the absolute minimum and the absolute maximum values of the function $f(x) = x - \sqrt[3]{x}$ over the interval [-1, 4].

Q5) (8 points) What is the maximum vertical distance between the line y = x + 2 and the parabola $y = x^2$ for $-1 \le x \le 2$?

Q6) (8 points; 4 points each) let $f(x) = x^3 - 3x^2 - 9x + 4$

a) Find the intervals on which *f* is increasing or decreasing. (Justify your answer)

b) Find the intervals on which f is concave upward or downward. (Justify your answer)

Q7) (6 points) Use implicit differentiation to find the equation of the tangent line to the curve $x^2 - xy - y^2 = 1$ at the point (2, 1).

Q8) (16 points) Let $f(x) = \frac{x-1}{x^2}$

- a) (3 points) Find the domain of f and the *x*-intercept.
- b) (2 points) Determine the vertical and horizontal asymptotes, if any.
- c) (4 points) Find the critical numbers <u>and</u> the local maximum and/or local minimum <u>points</u>, if any.

d) (4 points) Find the intervals on which f are concave up and/or concave down and the inflection <u>point(s)</u> if any.

e) (**3 points**) Sketch the graph of f