Prince Sultan University

Department of Mathematics and Physical Sciences Major I Exam

Semester II, 2008-2009 Spring (082) 04 April 2009

MATH 101 – Finite Mathematics

Time Allowed : 100 minutes

Y

Т

_____ Student Name:

Section:

ID Number:

Instructor's Name:

Important Instructions:

1. Y ou may use a scientific calculator that does not have programming or graphing capabilities.

> Y ou may not borrow a calculator from anyone.

ou may not use notes or any textbook.

4. here should be no talking during the examination. 5. Y

> our exam will be taken immediately if your mobile phone is heard.

Question	Maximum score	Your Score
Q.1	10	
Q.2	10	
Q.3	10	
Q.4	10	
Q.5	8	
Q.6	12	
Q.7	10	
Q.8	10	
Q.9	8	
Q.10	12	
Total	100	

6.

2.

3.

Looking around or making an attempt to

cheat will result in your exam being cancelled.

7. This exam has 10 problems, some with several parts and a total of 7 pages. Make sure your papers have all these problems.

Q.1 (10 points)

i. Find the equation of the line with slope -3 and y-intercept -2.

ii. Find the equation of the line parallel to 2x - y = -2 and containing the point (1,1).

Q.2 (10 points) Determine whether the given pair of lines are parallel, coincidental or intersecting:

i.
$$\begin{cases} L: x - y = 5\\ M: -2x + 2y = -10 \end{cases}$$

ii.
$$\begin{cases} L: 4x + 2y = 4\\ M: 4x - 2y = 4 \end{cases}$$

Q.3 (10 points) In year 2003, the cost of a compact car averaged \$14,500. In year 2006, the cost of a compact car averaged \$15,450.

i. Assuming that the relationship between time and cost is linear, develop a formula for predicting the average cost of a compact in the future.

ii. What do you predict the average cost of a compact will be in 2009?

Q.4 (10 points) The supply and demand equations for sugar have been estimated to be given by the equations

$$S = 0.7 p + 0.4$$
 and $D = -0.5 p + 1.6$

where *p* is the price in dollars per pound and *S* and *D* are in millions of pounds.

i. Find the market price.

ii. What quantity of sugar is demanded at this market price.

<u>Q.5 (8 points)</u> For $A = \begin{bmatrix} 2 & -3 & 4 \\ 0 & 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -2 & 0 \\ 5 & 1 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} -3 & 0 & 5 \\ 2 & 1 & 3 \end{bmatrix}$. Find 3A + 4(B - C).

Q.6 (12 points) For \$1.79 per copy, the *Chicago Tribune* will deliver the Sunday newspaper to your front door. The cost to the *Tribune* for Sunday home delivery is approximately \$1.13 per newspaper with fixed costs of \$1,252,000.

- i. Determine the revenue *R* from delivering *x* newspapers.
- ii. Determine the cost *C* of delivering *x* newspapers.
- iii. Determine the profit P of delivering x newspapers.
- iv. Determine the break-even point.

Q.7 (10 points) The matrix $\begin{bmatrix} 1 & -3 & 4 & | & 3 \\ 0 & 2 & -4 & | & 2 \\ 0 & -6 & 12 & | & -6 \end{bmatrix}$ is the *augmented matrix* of a system of

linear equations.

i. Find the *reduced row echelon form* of this matrix.

ii. Determine whether the system is *consistent* or *inconsistent*. If it is *consistent*, write the solution set.

Q.8 (10 points)

i. Find x and y such that
$$\begin{bmatrix} 3 & -2 & 2 \\ 1 & 0 & -1 \end{bmatrix} + \begin{bmatrix} x - y & 2 & -2 \\ 4 & x & 6 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 \\ 5 & 2x + y & 5 \end{bmatrix}$$
.

ii. Find the product
$$\begin{bmatrix} 1 & -2 & 3 \\ 4 & 0 & 6 \end{bmatrix} \cdot \begin{bmatrix} 0 & -2 \\ 1 & 0 \\ 2 & -4 \end{bmatrix}$$
.

Q.9 (8 points) Solve the system of equations $\begin{cases} 2x + y = 1 \\ 4x + 2y = 3 \end{cases}$. If the system has no solution, say it is *inconsistent*.

Q.10 (12 points)

i. Find the inverse of
$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 7 & 3 \\ 1 & 0 & 6 \end{bmatrix}$$
.

ii. Use the inverse to solve the following system $\begin{cases} x+3y+2z=1\\ 2x+7y+3z=2.\\ x+6z=3 \end{cases}$